Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Aileen Nielsen - Irregular time series and how to whip them

Автор: PyData

Загружено: 2016-05-09

Просмотров: 21922

Описание:

PyData London 2016

This talk will present best-practices and most commonly used methods for dealing with irregular time series. Though we'd all like data to come at regular and reliable intervals, the reality is that most time series data doesn't come this way. Fortunately, there is a long-standing theoretical framework for knowing what does and doesn't make sense for corralling this irregular data.

Irregular time series and how to whip them

History of irregular time series

Statisticians have long grappled with what to do in the case of missing data, and missing data in a time series is a special, but very common, case of the general problem of missing data. Luckily, irregular time series offer more information and more promising techniques than simple guesswork and rules of thumb.

Your best options

I'll discuss best-practices for irregular time series, emphasizing in particular early-stage decision making driven by data and the purpose of a particular analysis. I'll also highlight best-Python practices and state of the art frameworks that correspond to statistical best practices.

In particular I'll cover the following topics:

Visualizing irregular time series
Drawing inferences from patterns of missing data
Correlation techniques for irregular time series
Causal analysis for irregular time series

Slides available here: https://speakerdeck.com/aileenanielse... 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Aileen Nielsen - Irregular time series and how to whip them

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Travis Oliphant - KEYNOTE: Scaling Out PyData

Travis Oliphant - KEYNOTE: Scaling Out PyData

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Time, Interrupted: Measuring Intervention Effects with Interrupted Time-Series Analysis - Ben Cohen

Time, Interrupted: Measuring Intervention Effects with Interrupted Time-Series Analysis - Ben Cohen

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law

Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law

Учебник по Excel за 15 минут

Учебник по Excel за 15 минут

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Modern Time Series Analysis | SciPy 2019 Tutorial | Aileen Nielsen

Modern Time Series Analysis | SciPy 2019 Tutorial | Aileen Nielsen

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

PyCon.DE 2017 Nils Braun - Time series feature extraction with tsfresh - “get rich or die..

PyCon.DE 2017 Nils Braun - Time series feature extraction with tsfresh - “get rich or die..

Assurance Scoring Using Machine Learning and Analytics to Reduce Risk in the Public Sector

Assurance Scoring Using Machine Learning and Analytics to Reduce Risk in the Public Sector

Sean Law - Modern Time Series Analysis with STUMPY - Intro To Matrix Profiles | PyData Global 2020

Sean Law - Modern Time Series Analysis with STUMPY - Intro To Matrix Profiles | PyData Global 2020

Vincent Warmerdam: Winning with Simple, even Linear, Models | PyData London 2018

Vincent Warmerdam: Winning with Simple, even Linear, Models | PyData London 2018

Временной ряд 101: соображения и предположения относительно данных

Временной ряд 101: соображения и предположения относительно данных

Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Markus Loning - Introduction to Machine Learning with Time Series | PyData Fest Amsterdam 2020

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Time Series Analysis with Python Intermediate | SciPy 2016 Tutorial | Aileen Nielsen

Time Series Analysis with Python Intermediate | SciPy 2016 Tutorial | Aileen Nielsen

Random Forest Algorithm | Random Forest Complete Explanation | Data Science Training | Edureka

Random Forest Algorithm | Random Forest Complete Explanation | Data Science Training | Edureka

What is Time Series Analysis?

What is Time Series Analysis?

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]