Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Sean Law - Modern Time Series Analysis with STUMPY - Intro To Matrix Profiles | PyData Global 2020

Автор: PyData

Загружено: 2021-01-05

Просмотров: 18532

Описание:

Traditional time series analysis techniques have found success in a variety of data mining tasks. However, they often require years of experience to master and the recent development of straightforward, easy-to-use analysis tools has been lacking. STUMPY is a scientific Python library for modern time series analysis that efficiently computes something called a matrix profile and leverages popular open source software and enables you to do better science!

https://github.com/TDAmeritrade/stumpy
https://stumpy.readthedocs.io

Sean Law is a senior applied scientific researcher and lead data scientist currently working with a multi-talented Exploration Lab team and serves as an advisor on an enterprise A.I. Council at TD Ameritrade. He has experience producing cutting edge methodologies, building high-performance predictive models, and developing rapid prototypes. Additionally, he is one of the co-organizers of PyData Ann Arbor and is also the creator and core maintainer of STUMPY, a powerful and scalable open source Python library that can be used for a variety of time series data mining tasks.

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases. 00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Sean Law - Modern Time Series Analysis with STUMPY - Intro To Matrix Profiles | PyData Global 2020

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Aileen Nielsen - Irregular time series and how to whip them

Aileen Nielsen - Irregular time series and how to whip them

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Kishan Manani - Feature Engineering for Time Series Forecasting | PyData London 2022

Aaron Richter- Parallel Processing in Python| PyData Global 2020

Aaron Richter- Parallel Processing in Python| PyData Global 2020

Time Series data Mining Using the Matrix Profile part 1

Time Series data Mining Using the Matrix Profile part 1

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Sean Law - STUMPY: Modern Time Series Analysis with Matrix Profiles | SciPy 2024

Sean Law - STUMPY: Modern Time Series Analysis with Matrix Profiles | SciPy 2024

Vincent Warmerdam: Winning with Simple, even Linear, Models | PyData London 2018

Vincent Warmerdam: Winning with Simple, even Linear, Models | PyData London 2018

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law

Automatically Find Patterns & Anomalies from Time Series or Sequential Data - Sean Law

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

CNNs / wavenet / transformer-based models | Forecasting big time series | Amazon Science

CNNs / wavenet / transformer-based models | Forecasting big time series | Amazon Science

1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jeff Roach

1D Convolutional Neural Networks for Time Series Modeling - Nathan Janos, Jeff Roach

[30] Modern Time Series Analysis with STUMPY (Sean Law)

[30] Modern Time Series Analysis with STUMPY (Sean Law)

Introduction to Customer Segmentation | 365 Data Science Online Course

Introduction to Customer Segmentation | 365 Data Science Online Course

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting

Max Mergenthaler and Fede Garza - Quantifying Uncertainty in Time Series Forecasting

Time Series data Mining Using the Matrix Profile part 2

Time Series data Mining Using the Matrix Profile part 2

Scaling Pandas Using Dask: How to Avoid All My Mistakes | Krishan Bhasin | Dask Summit 2021

Scaling Pandas Using Dask: How to Avoid All My Mistakes | Krishan Bhasin | Dask Summit 2021

Maria Murashova: Integrating LLMs with Traditional Data Analysis | PyData Tel Aviv 2025

Maria Murashova: Integrating LLMs with Traditional Data Analysis | PyData Tel Aviv 2025

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]