Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Gradients are Not All You Need (Machine Learning Research Paper Explained)

Автор: Yannic Kilcher

Загружено: 2021-11-15

Просмотров: 38957

Описание:

#deeplearning #backpropagation #simulation

More and more systems are made differentiable, which means that accurate gradients of these systems' dynamics can be computed exactly. While this development has led to a lot of advances, there are also distinct situations where backpropagation can be a very bad idea. This paper characterizes a few such systems in the domain of iterated dynamical systems, often including some source of stochasticity, resulting in chaotic behavior. In these systems, it is often better to use black-box estimators for gradients than computing them exactly.

OUTLINE:
0:00 - Foreword
1:15 - Intro & Overview
3:40 - Backpropagation through iterated systems
12:10 - Connection to the spectrum of the Jacobian
15:35 - The Reparameterization Trick
21:30 - Problems of reparameterization
26:35 - Example 1: Policy Learning in Simulation
33:05 - Example 2: Meta-Learning Optimizers
36:15 - Example 3: Disk packing
37:45 - Analysis of Jacobians
40:20 - What can be done?
45:40 - Just use Black-Box methods

Paper: https://arxiv.org/abs/2111.05803

Abstract:
Differentiable programming techniques are widely used in the community and are responsible for the machine learning renaissance of the past several decades. While these methods are powerful, they have limits. In this short report, we discuss a common chaos based failure mode which appears in a variety of differentiable circumstances, ranging from recurrent neural networks and numerical physics simulation to training learned optimizers. We trace this failure to the spectrum of the Jacobian of the system under study, and provide criteria for when a practitioner might expect this failure to spoil their differentiation based optimization algorithms.

Authors: Luke Metz, C. Daniel Freeman, Samuel S. Schoenholz, Tal Kachman

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord:   / discord  
BitChute: https://www.bitchute.com/channel/yann...
LinkedIn:   / ykilcher  
BiliBili: https://space.bilibili.com/2017636191

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Gradients are Not All You Need (Machine Learning Research Paper Explained)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Learning Rate Grafting: Transferability of Optimizer Tuning (Machine Learning Research Paper Review)

Learning Rate Grafting: Transferability of Optimizer Tuning (Machine Learning Research Paper Review)

Perceiver: General Perception with Iterative Attention (Google DeepMind Research Paper Explained)

Perceiver: General Perception with Iterative Attention (Google DeepMind Research Paper Explained)

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Момент, когда мы перестали понимать ИИ [AlexNet]

Момент, когда мы перестали понимать ИИ [AlexNet]

Цепи Маркова — математика предсказаний [Veritasium]

Цепи Маркова — математика предсказаний [Veritasium]

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LSTM is dead. Long Live Transformers!

LSTM is dead. Long Live Transformers!

MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)

MLP-Mixer: An all-MLP Architecture for Vision (Machine Learning Research Paper Explained)

Освойте статьи по машинному обучению, не теряя своих знаний

Освойте статьи по машинному обучению, не теряя своих знаний

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters (Paper)

Scaling LLM Test-Time Compute Optimally can be More Effective than Scaling Model Parameters (Paper)

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

PonderNet: Learning to Ponder (Machine Learning Research Paper Explained)

PonderNet: Learning to Ponder (Machine Learning Research Paper Explained)

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Rethinking Attention with Performers (Paper Explained)

Rethinking Attention with Performers (Paper Explained)

Why Deep Learning Works Unreasonably Well [How Models Learn Part 3]

Why Deep Learning Works Unreasonably Well [How Models Learn Part 3]

Эффект наблюдателя – полное объяснение без мистики.

Эффект наблюдателя – полное объяснение без мистики.

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Learning Mesh-Based Simulation with Graph Networks - Tobias Pfaff (DeepMind)

Learning Mesh-Based Simulation with Graph Networks - Tobias Pfaff (DeepMind)

Deep Networks Are Kernel Machines (Paper Explained)

Deep Networks Are Kernel Machines (Paper Explained)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]