Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Deep Networks Are Kernel Machines (Paper Explained)

Автор: Yannic Kilcher

Загружено: 2021-02-04

Просмотров: 62602

Описание:

#deeplearning #kernels #neuralnetworks

Full Title: Every Model Learned by Gradient Descent Is Approximately a Kernel Machine

Deep Neural Networks are often said to discover useful representations of the data. However, this paper challenges this prevailing view and suggest that rather than representing the data, deep neural networks store superpositions of the training data in their weights and act as kernel machines at inference time. This is a theoretical paper with a main theorem and an understandable proof and the result leads to many interesting implications for the field.

OUTLINE:
0:00 - Intro & Outline
4:50 - What is a Kernel Machine?
10:25 - Kernel Machines vs Gradient Descent
12:40 - Tangent Kernels
22:45 - Path Kernels
25:00 - Main Theorem
28:50 - Proof of the Main Theorem
39:10 - Implications & My Comments

Paper: https://arxiv.org/abs/2012.00152
Street Talk about Kernels:    • Kernels!  

ERRATA: I simplify a bit too much when I pit kernel methods against gradient descent. Of course, you can even learn kernel machines using GD, they're not mutually exclusive. And it's also not true that you "don't need a model" in kernel machines, as it usually still contains learned parameters.

Abstract:
Deep learning's successes are often attributed to its ability to automatically discover new representations of the data, rather than relying on handcrafted features like other learning methods. We show, however, that deep networks learned by the standard gradient descent algorithm are in fact mathematically approximately equivalent to kernel machines, a learning method that simply memorizes the data and uses it directly for prediction via a similarity function (the kernel). This greatly enhances the interpretability of deep network weights, by elucidating that they are effectively a superposition of the training examples. The network architecture incorporates knowledge of the target function into the kernel. This improved understanding should lead to better learning algorithms.

Authors: Pedro Domingos

Links:
TabNine Code Completion (Referral): http://bit.ly/tabnine-yannick
YouTube:    / yannickilcher  
Twitter:   / ykilcher  
Discord:   / discord  
BitChute: https://www.bitchute.com/channel/yann...
Minds: https://www.minds.com/ykilcher
Parler: https://parler.com/profile/YannicKilcher
LinkedIn:   / yannic-kilcher-488534136  
BiliBili: https://space.bilibili.com/1824646584

If you want to support me, the best thing to do is to share out the content :)

If you want to support me financially (completely optional and voluntary, but a lot of people have asked for this):
SubscribeStar: https://www.subscribestar.com/yannick...
Patreon:   / yannickilcher  
Bitcoin (BTC): bc1q49lsw3q325tr58ygf8sudx2dqfguclvngvy2cq
Ethereum (ETH): 0x7ad3513E3B8f66799f507Aa7874b1B0eBC7F85e2
Litecoin (LTC): LQW2TRyKYetVC8WjFkhpPhtpbDM4Vw7r9m
Monero (XMR): 4ACL8AGrEo5hAir8A9CeVrW8pEauWvnp1WnSDZxW7tziCDLhZAGsgzhRQABDnFy8yuM9fWJDviJPHKRjV4FWt19CJZN9D4n

Deep Networks Are Kernel Machines (Paper Explained)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Yann LeCun - Self-Supervised Learning: The Dark Matter of Intelligence (FAIR Blog Post Explained)

Yann LeCun - Self-Supervised Learning: The Dark Matter of Intelligence (FAIR Blog Post Explained)

Gradients are Not All You Need (Machine Learning Research Paper Explained)

Gradients are Not All You Need (Machine Learning Research Paper Explained)

Lecture 7 - Deep Learning Foundations: Neural Tangent Kernels

Lecture 7 - Deep Learning Foundations: Neural Tangent Kernels

Математики открывают странную новую бесконечность

Математики открывают странную новую бесконечность

Rethinking Attention with Performers (Paper Explained)

Rethinking Attention with Performers (Paper Explained)

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)

BYOL: Bootstrap Your Own Latent: A New Approach to Self-Supervised Learning (Paper Explained)

Китай только что запустил SLAUGHTERBOTS: армию роботов, полностью управляемую искусственным интел...

Китай только что запустил SLAUGHTERBOTS: армию роботов, полностью управляемую искусственным интел...

ICLR 2021 Keynote -

ICLR 2021 Keynote - "Geometric Deep Learning: The Erlangen Programme of ML" - M Bronstein

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

[Classic] Deep Residual Learning for Image Recognition (Paper Explained)

Reinforcement Learning: Machine Learning Meets Control Theory

Reinforcement Learning: Machine Learning Meets Control Theory

Договоренность с Москвой - часть новой глобальной доктрины США. Это не тактика, это стратегия.

Договоренность с Москвой - часть новой глобальной доктрины США. Это не тактика, это стратегия.

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Быстрое преобразование Фурье (БПФ): самый гениальный алгоритм?

Быстрое преобразование Фурье (БПФ): самый гениальный алгоритм?

The Insane Engineering of the ISS

The Insane Engineering of the ISS

V-JEPA: Revisiting Feature Prediction for Learning Visual Representations from Video (Explained)

V-JEPA: Revisiting Feature Prediction for Learning Visual Representations from Video (Explained)

Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention (AI Paper Explained)

Nyströmformer: A Nyström-Based Algorithm for Approximating Self-Attention (AI Paper Explained)

Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)

Discovering Symbolic Models from Deep Learning with Inductive Biases (Paper Explained)

Раскрытие возможностей искусственного интеллекта: как меняется жизнь каждого с Джеком Хидари, Сал...

Раскрытие возможностей искусственного интеллекта: как меняется жизнь каждого с Джеком Хидари, Сал...

Let's build GPT: from scratch, in code, spelled out.

Let's build GPT: from scratch, in code, spelled out.

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]