Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

CAT-ORA: Collision-Aware Time-Optimal Formation Reshaping for Efficient Robot Coordination

Автор: Multi-robot Systems Group at FEE-CTU in Prague

Загружено: 2025-05-26

Просмотров: 297

Описание:

Link to publication: https://doi.org/10.1109/TRO.2025.3547296
Authors' version: https://mrs.fel.cvut.cz/data/papers/c...
Code: https://github.com/ctu-mrs/catora

Full reference:
V. Kratky, R. Penicka, J. Horyna, P. Stibinger, T. Baca, M. Petrlik, P. Stepan, M. Saska, "CAT-ORA: Collision-Aware Time-Optimal Formation Reshaping for Efficient Robot Coordination in 3-D Environments," in IEEE Transactions on Robotics, vol. 41, pp. 2950-2969, 2025.

Abstract:
In this article, we introduce an algorithm designed to address the problem of time-optimal formation reshaping in three-dimensional environments while preventing collisions between agents. The utility of the proposed approach is particularly evident in mobile robotics, where agents benefit from being organized and navigated in formation for a variety of real-world applications requiring frequent alterations in formation shape for efficient navigation or task completion. Given the constrained operational time inherent to battery-powered mobile robots, the time needed to complete the formation reshaping process is crucial for their efficient operation, especially in case of multi-rotor uncrewed aerial vehicles (UAVs). The proposed collision-aware time-optimal formation reshaping algorithm (CAT-ORA) builds upon the Hungarian algorithm for the solution of the robot-to-goal assignment implementing the interagent collision avoidance through direct constraints on mutually exclusive robot-goal pairs combined with a trajectory generation approach minimizing the duration of the reshaping process. Theoretical validations confirm the optimality of CAT-ORA, with its efficacy further showcased through simulations, and a real-world outdoor experiment involving 19 UAVs. Thorough numerical analysis shows the potential of CAT-ORA to decrease the time required to perform complex formation reshaping tasks by up to 49%, and 12% on average compared to commonly used methods in randomly generated scenarios.

An MRS open-source research UAV platform was used for experiments presented in this video. See http://mrs.felk.cvut.cz/system for details and the source code of the MRS UAV platform, which enables all essential capabilities for research, development, and testing of novel methods. For publications describing the applied system and control stack, see:

T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert and M. Saska, “The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles,” Journal of Intelligent & Robotic Systems 102(26):1–28, May 2021, https://doi.org/10.1007/s10846-021-01....

D. Hert et al., "MRS Modular UAV Hardware Platforms for Supporting Research in Real-World Outdoor and Indoor Environments," 2022 International Conference on Unmanned Aircraft Systems (ICUAS), 2022, pp. 1264-1273, doi: 10.1109/ICUAS54217.2022.983608, https://doi.org/10.1109/ICUAS54217.20....

This work was accomplished by the MRS group at CTU in Prague http://mrs.felk.cvut.cz . For more experiments with the MRS UAV research platforms, see http://mrs.felk.cvut.cz/publications

CAT-ORA: Collision-Aware Time-Optimal Formation Reshaping for Efficient Robot Coordination

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

CoViS-Net: A Cooperative Visual Spatial Foundation Model for Multi-Robot Applications

CoViS-Net: A Cooperative Visual Spatial Foundation Model for Multi-Robot Applications

On Onboard LiDAR-based Flying Object Detection

On Onboard LiDAR-based Flying Object Detection

The Algorithm is a

The Algorithm is a "Rearview Mirror" (And It’s Steering Your Life)

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Как Сделать Идеальный Сервопривод из любого BLDC мотора | Векторное управление | Робособака №1

Как Сделать Идеальный Сервопривод из любого BLDC мотора | Векторное управление | Робособака №1

Shortest Path Algorithm Problem - Computerphile

Shortest Path Algorithm Problem - Computerphile

CurviTrack: Curvilinear Trajectory Tracking for High-speed Chase of a USV

CurviTrack: Curvilinear Trajectory Tracking for High-speed Chase of a USV

Как работает очистка городской воды: питьевая и сточная вода

Как работает очистка городской воды: питьевая и сточная вода

Глава Neuralink: чип в мозге заменит вам телефон

Глава Neuralink: чип в мозге заменит вам телефон

Волновой Редуктор с ПТК 1:17  |  Лучший редуктор на 3D принтере?

Волновой Редуктор с ПТК 1:17 | Лучший редуктор на 3D принтере?

Huge Breakthrough: We're Beyond Silicon

Huge Breakthrough: We're Beyond Silicon

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Как Увидеть Глубину? Стереозрение. Робособака. OpenCV и роботы.

Как Увидеть Глубину? Стереозрение. Робособака. OpenCV и роботы.

НЕВИДИМОЕ ВЕЩЕСТВО, ИЗ КОТОРОГО СОСТОИТ ВСЕЛЕННАЯ: ТЁМНАЯ МАТЕРИЯ. Семихатов, Сурдин, Боос

НЕВИДИМОЕ ВЕЩЕСТВО, ИЗ КОТОРОГО СОСТОИТ ВСЕЛЕННАЯ: ТЁМНАЯ МАТЕРИЯ. Семихатов, Сурдин, Боос

Введение в кодирование шейдерной графики

Введение в кодирование шейдерной графики

Extracting Firmware from a Chinese Security Camera - Hacking the Anran IP Camera

Extracting Firmware from a Chinese Security Camera - Hacking the Anran IP Camera

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Drones Guiding Drones: Cooperative Navigation of a Less-Equipped MAV in Cluttered Environments

Drones Guiding Drones: Cooperative Navigation of a Less-Equipped MAV in Cluttered Environments

RVC-NMPC: NMPC with Reciprocal Velocity Constraints for Mutual Collision Avoidance of Agile UAVs

RVC-NMPC: NMPC with Reciprocal Velocity Constraints for Mutual Collision Avoidance of Agile UAVs

State estimation of marine vessels affected by waves by unmanned aerial vehicles

State estimation of marine vessels affected by waves by unmanned aerial vehicles

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]