Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Entire Data Science Interview Prep | From Foundations to Advanced & Tricky Concepts | Part 1-3

Автор: Data Science Animated by Lubula

Загружено: 2025-11-23

Просмотров: 21

Описание:

Crash course covering the most common Machine Learning foundation questions you need to know. Dive deep into advanced and tricky Machine Learning concepts with this course. Explore intermediate Machine Learning concepts in depth with this comprehensive crash course.

👉 What you’ll learn in this video:
✅ Difference between AI, Machine Learning, and Deep Learning
✅ Supervised, Unsupervised, and Reinforcement Learning (with examples)
✅ Overfitting vs Underfitting & how to prevent them
✅ Why we split Training, Validation, and Test datasets
✅ Bias-Variance Tradeoff explained simply
✅ What is Cross-Validation and why it matters
✅ Activation Functions in Neural Networks
✅ Gradient Descent & the Vanishing Gradient Problem (and how ReLU solves it)
✅ Batch vs Stochastic vs Mini-batch Gradient Descent
✅ Classification vs Regression in ML
✅ What is Regularization (L1 vs L2) and why it prevents overfitting
✅ What is the vanishing gradient problem? Why is it an issue, and how was it solved by ReLU?
✅ What is batch normalization and why does it help training?
✅Regularization technique specific to neural networks. the differences
between L1 and L2 regularization
✅ What is dropout In deep learning
✅What are evaluation metrics ( precision, recall,, ROC-AUC) and when would you use each?
✅ What is k-fold Cross-Validation and why it matters
✅ What is Dimensionality Reduction and PCA (Principal Component Analysis)? Why is it used?
✅ What is the difference between generative and discriminative models?
✅Complex generative model architecture and its difficulties
✅What is double descent phenomenon in modern deep learning, and how does it
✅ What is the difference between max-margin loss (SVM) and cross-entropy loss? When would each be preferred and why?
✅Why does batch normalization important for transformer architecture
✅ Explain attention mechanisms and how they led to Transformers
✅ Catastrophic forgetting👉 What you’ll learn in this video:
✅ Difference between AI, Machine Learning, and Deep Learning
✅ Supervised, Unsupervised, and Reinforcement Learning (with examples)
✅ Overfitting vs Underfitting & how to prevent them
✅ Why we split Training, Validation, and Test datasets
✅ Bias-Variance Tradeoff explained simply
✅ What is Cross-Validation and why it matters
✅ Activation Functions in Neural Networks
✅ Gradient Descent & the Vanishing Gradient Problem (and how ReLU solves it)
✅ Batch vs Stochastic vs Mini-batch Gradient Descent
✅ Classification vs Regression in ML
✅ What is Regularization (L1 vs L2) and why it prevents overfitting
✅ What is the vanishing gradient problem? Why is it an issue, and how was it solved by ReLU?
✅ What is batch normalization and why does it help training?
✅Regularization technique specific to neural networks. the differences
between L1 and L2 regularization
✅ What is dropout In deep learning
✅What are evaluation metrics ( precision, recall,, ROC-AUC) and when would you use each?
✅ What is k-fold Cross-Validation and why it matters
✅ What is Dimensionality Reduction and PCA (Principal Component Analysis)? Why is it used?
✅ What is the difference between generative and discriminative models?
✅Complex generative model architecture and its difficulties
✅What is double descent phenomenon in modern deep learning, and how does it
✅ What is the difference between max-margin loss (SVM) and cross-entropy loss? When would each be preferred and why?
✅Why does batch normalization important for transformer architecture
✅ Explain attention mechanisms and how they led to Transformers
✅ Catastrophic forgetting

🎓 Perfect for students, AI enthusiasts, and anyone curious about how machines understand human language.

🔗 Keep learning:
📺 [Introduction to Data Science Playlist] ▶️ [   • Introduction to Data Science  ]
📺 [Attention is All You Need Playlist] ▶️ [   • Attention is All You need | Crash Courses  ]
📺 [Data Science Career Guide] ▶️ [   • Career Guidance in Data Science  ]
📺 [Artificial Intelligence Building Blocks] ▶️ [   • Artificial Intelligence Building Blocks  ]

🌍 Animated learning from Africa to the world — Data Science Animated by Lubula.
#statistics #ai #datascience #machinelearning #deeplearning #tech

Entire Data Science Interview Prep | From Foundations to Advanced & Tricky Concepts | Part 1-3

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Essential Machine Learning and AI Concepts Animated

Essential Machine Learning and AI Concepts Animated

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Welcome to Data Science | Recap of the Introduction to Data Science Entire Series | Part 2

Welcome to Data Science | Recap of the Introduction to Data Science Entire Series | Part 2

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Top 30 Machine Learning Interview Questions 2025 | ML Interview Questions And Answers | Intellipaat

Top 30 Machine Learning Interview Questions 2025 | ML Interview Questions And Answers | Intellipaat

Предел развития НЕЙРОСЕТЕЙ

Предел развития НЕЙРОСЕТЕЙ

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

Stanford CS229 I Machine Learning I Building Large Language Models (LLMs)

An In Depth Analysis of Supervised Learning Vs Unsupervised Learning Vs Reinforcement Learning

An In Depth Analysis of Supervised Learning Vs Unsupervised Learning Vs Reinforcement Learning

Top 7 Data Science Interview Questions (Behavioral & Tech)

Top 7 Data Science Interview Questions (Behavioral & Tech)

Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018)

Stanford CS229: Machine Learning Course, Lecture 1 - Andrew Ng (Autumn 2018)

Новый NotebookLM: НИКОГДА НЕ ВРЕТ! Большой бесплатный курс по нейросети от Google

Новый NotebookLM: НИКОГДА НЕ ВРЕТ! Большой бесплатный курс по нейросети от Google

All Machine Learning Concepts Explained in 22 Minutes

All Machine Learning Concepts Explained in 22 Minutes

See the ONE Math Concept That Powers ALL of AI (It's Easier Than You Think) - Lecture 4

See the ONE Math Concept That Powers ALL of AI (It's Easier Than You Think) - Lecture 4

20 концепций искусственного интеллекта, объясненных за 40 минут

20 концепций искусственного интеллекта, объясненных за 40 минут

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

MIT 6.S191: Deep Generative Modeling

MIT 6.S191: Deep Generative Modeling

All Machine Learning Models Clearly Explained!

All Machine Learning Models Clearly Explained!

Introduction to Data Science: Complete Playlist Series

Introduction to Data Science: Complete Playlist Series

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

All Machine Learning algorithms explained in 17 min

All Machine Learning algorithms explained in 17 min

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]