Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

StatQuest: PCA main ideas in only 5 minutes!!!

Автор: StatQuest with Josh Starmer

Загружено: 2017-12-04

Просмотров: 1449689

Описание:

The main ideas behind PCA are actually super simple and that means it's easy to interpret a PCA plot: Samples that are correlated will cluster together apart from samples that are not correlated with them. In this video, I walk through the ideas so that you will have an intuitive sense of how PCA plots are draw. If you'd like more details, check out my full length PCA video here:    • Principal Component Analysis (PCA) clearly...  

For a complete index of all the StatQuest videos, check out:
https://statquest.org/video-index/

If you'd like to support StatQuest, please consider...

Patreon:   / statquest  
...or...
YouTube Membership:    / @statquest  

...buying one of my books, a study guide, a t-shirt or hoodie, or a song from the StatQuest store...
https://statquest.org/statquest-store/

...or just donating to StatQuest!
https://www.paypal.me/statquest

Lastly, if you want to keep up with me as I research and create new StatQuests, follow me on twitter:
  / joshuastarmer  

0:00 Awesome song and introduction
0:27 Motivation for using PCA
1:23 Correlations among samples
3:36 PCA converts correlations into a 2-D graph
4:26 Interpreting PCA plots
5:08 Other options for dimension reduction

#statquest #PCA #ML

StatQuest: PCA main ideas in only 5 minutes!!!

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#5891 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "EuBBz3bI-aA" ["related_video_title"]=> string(48) "Machine Learning Fundamentals: Bias and Variance" ["posted_time"]=> string(19) "6 лет назад" ["channelName"]=> string(27) "StatQuest with Josh Starmer" } [1]=> object(stdClass)#5864 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "FgakZw6K1QQ" ["related_video_title"]=> string(59) "StatQuest: Principal Component Analysis (PCA), Step-by-Step" ["posted_time"]=> string(19) "7 лет назад" ["channelName"]=> string(27) "StatQuest with Josh Starmer" } [2]=> object(stdClass)#5889 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "_UVHneBUBW0" ["related_video_title"]=> string(59) "Principal Component Analysis (PCA) clearly explained (2015)" ["posted_time"]=> string(19) "9 лет назад" ["channelName"]=> string(27) "StatQuest with Josh Starmer" } [3]=> object(stdClass)#5896 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "PFDu9oVAE-g" ["related_video_title"]=> string(68) "Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra" ["posted_time"]=> string(19) "8 лет назад" ["channelName"]=> string(11) "3Blue1Brown" } [4]=> object(stdClass)#5875 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "5vgP05YpKdE" ["related_video_title"]=> string(67) "Principal Component Analysis (PCA) - easy and practical explanation" ["posted_time"]=> string(21) "2 года назад" ["channelName"]=> string(12) "Biostatsquid" } [5]=> object(stdClass)#5893 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "ATfDsdlze3E" ["related_video_title"]=> string(56) "Covariance Explained ← Probability & Statistics" ["posted_time"]=> string(21) "9 дней назад" ["channelName"]=> string(9) "Socratica" } [6]=> object(stdClass)#5888 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "fkf4IBRSeEc" ["related_video_title"]=> string(34) "Principal Component Analysis (PCA)" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(13) "Steve Brunton" } [7]=> object(stdClass)#5898 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "7gjsXzS0lTI" ["related_video_title"]=> string(76) "Я Добыл Самое Сильное Оружие в Майнкрафте" ["posted_time"]=> string(21) "1 день назад" ["channelName"]=> string(25) "Carvs На Русском" } [8]=> object(stdClass)#5874 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "YevSE6bRhTo" ["related_video_title"]=> string(60) "The most important theory in statistics | Maximum Likelihood" ["posted_time"]=> string(25) "4 месяца назад" ["channelName"]=> string(11) "Very Normal" } [9]=> object(stdClass)#5892 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "FD4DeN81ODY" ["related_video_title"]=> string(34) "Principal Component Analysis (PCA)" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> string(18) "Visually Explained" } }
Machine Learning Fundamentals: Bias and Variance

Machine Learning Fundamentals: Bias and Variance

StatQuest: Principal Component Analysis (PCA), Step-by-Step

StatQuest: Principal Component Analysis (PCA), Step-by-Step

Principal Component Analysis (PCA) clearly explained (2015)

Principal Component Analysis (PCA) clearly explained (2015)

Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra

Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra

Principal Component Analysis (PCA) - easy and practical explanation

Principal Component Analysis (PCA) - easy and practical explanation

Covariance Explained ← Probability & Statistics

Covariance Explained ← Probability & Statistics

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

Я Добыл Самое Сильное Оружие в Майнкрафте

Я Добыл Самое Сильное Оружие в Майнкрафте

The most important theory in statistics | Maximum Likelihood

The most important theory in statistics | Maximum Likelihood

Principal Component Analysis (PCA)

Principal Component Analysis (PCA)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]