Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Automated Methods for Efficient Training and Architecture Design: Aaron Klein (OpenEuroLLM)

Автор: SFI Visual Intelligence

Загружено: 2026-01-14

Просмотров: 31

Описание:

Aaron Klein, Project Leader at OpenEuroLLM, Ellis Institute Tübingen, gave a presentation titled "Optimizing Deep Learning: Automated Methods for Efficient Training and Architecture Design" on December 18th 2025 as part of the Visual Intelligence Online Seminar series.

Abstract:
Training deep neural networks still relies heavily on selecting the right hyperparameters and making manual architectural decisions. This often leads to an inefficient trial-and-error process that is both computationally expensive and time-consuming.

This talk explores how automated machine learning techniques can make this pipeline faster, more efficient, and more reliable. We begin by introducing core methods in model-based hyperparameter optimization that automatically configure the training process of deep learning models. By leveraging advanced early-stopping and multi-fidelity strategies, we can substantially accelerate the overall optimization procedure.

In the second part of the talk, we discuss recent developments in neural architecture search aimed at automating architectural design choices. We show that these methods can discover architectures that optimally trade off performance and efficiency, including metrics such as latency and energy consumption. Finally, we demonstrate how neural architecture search can be used to identify strong initializations for pre-training small language models.

Automated Methods for Efficient Training and Architecture Design: Aaron Klein (OpenEuroLLM)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Оценка моделей «Фонд» и «Агентство» в эпоху доверия: Шришти Гаутам (Microsoft)

Оценка моделей «Фонд» и «Агентство» в эпоху доверия: Шришти Гаутам (Microsoft)

The Compression Paradox: Why AI and Humans See the World Differently: Ravid Shwartz Ziv

The Compression Paradox: Why AI and Humans See the World Differently: Ravid Shwartz Ziv

Recursive Task Parallelism in Taskflow

Recursive Task Parallelism in Taskflow

Ethical Challenges in Natural Language Processing: Samia Touileb (University of Bergen)

Ethical Challenges in Natural Language Processing: Samia Touileb (University of Bergen)

Частично контролируемый скрининг множественных заболеваний сетчатки: Бойи Чжэн (Университет Оулу)

Частично контролируемый скрининг множественных заболеваний сетчатки: Бойи Чжэн (Университет Оулу)

Addressing Label Shift in Distributed Learning via Entropy Regularization: Zhiyuan Wu (UiO)

Addressing Label Shift in Distributed Learning via Entropy Regularization: Zhiyuan Wu (UiO)

FM4CS: A Versatile Foundation Model for Earth Observation Applications: Arnt-Børre Salberg (NR)

FM4CS: A Versatile Foundation Model for Earth Observation Applications: Arnt-Børre Salberg (NR)

Мониторинг временных рядов с использованием моделей Vision Language: Håkon Nese (Aker BP)

Мониторинг временных рядов с использованием моделей Vision Language: Håkon Nese (Aker BP)

Graphical Models 1 - Christopher Bishop - MLSS 2013 Tübingen

Graphical Models 1 - Christopher Bishop - MLSS 2013 Tübingen

Aleatoric and Epistemic Uncertainty in Statistics and Machine Learning: Willem Waegeman

Aleatoric and Epistemic Uncertainty in Statistics and Machine Learning: Willem Waegeman

Explainable Methods for Computer-Aided Diagnosis: Anuja Vats (NTNU)

Explainable Methods for Computer-Aided Diagnosis: Anuja Vats (NTNU)

Diffusion Model Meets XAI: Counterfactual Generation for Model Debugging: Nina Weng (DTU)

Diffusion Model Meets XAI: Counterfactual Generation for Model Debugging: Nina Weng (DTU)

Vincent Sitzmann: Implicit Neural Scene Representations

Vincent Sitzmann: Implicit Neural Scene Representations

The Role of Computational Pathology in Tomorrow’s Medicine: Geert Litjens (Radboud University)

The Role of Computational Pathology in Tomorrow’s Medicine: Geert Litjens (Radboud University)

In Search of Hidden Talents: Emergence in Foundation Model: Oskar Skean (Unviersity of Kentucky)

In Search of Hidden Talents: Emergence in Foundation Model: Oskar Skean (Unviersity of Kentucky)

Structure-Preserving Machine Learning for Physical Systems: Sølve Eidnes (SINTEF Digital)

Structure-Preserving Machine Learning for Physical Systems: Sølve Eidnes (SINTEF Digital)

11 Discovering Equations using Machine Learning

11 Discovering Equations using Machine Learning

Прототипная модель для сегментации медицинских изображений с малым количеством кадров: Хёнджи Ким...

Прототипная модель для сегментации медицинских изображений с малым количеством кадров: Хёнджи Ким...

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

Multimodal Learning: Machine Learning Group (UiT The Arctic University of Norway)

Multimodal Learning: Machine Learning Group (UiT The Arctic University of Norway)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com