In this langchain video, we will go over how you can implement chunking through 6 different text splitters. This ranges from recursive text splitters through markdown,
Code:
🚀 Hire me for Data Work: https://ryanandmattdatascience.com/da...
👨💻 Mentorships: https://ryanandmattdatascience.com/me...
📧 Email: [email protected]
🌐 Website & Blog: https://ryanandmattdatascience.com/
🖥️ Discord: / discord
📚 *Practice SQL & Python Interview Questions: https://stratascratch.com/?via=ryan
📖 *SQL and Python Courses: https://datacamp.pxf.io/XYD7Qg
🍿 WATCH NEXT
OpenAI/Langchain Playlist: • How to Build Your First AI LLM Prompts wit...
Document Loaders: • 6 Langchain Document Loaders to Master (Be...
Chat with a CSV: • Chat with a CSV - LangChain CSV Agents Tut...
Langchain Chains: • LangChain Chains for Beginners: An Easy In...
Who is Ryan
Ryan is a Data Scientist at a fintech company, where he focuses on fraud prevention in underwriting and risk. Before that, he worked as a Data Analyst at a tax software company. He holds a degree in Electrical Engineering from UCF.
Who is Matt
Matt is the founder of Width.ai, an AI and Machine Learning agency. Before starting his own company, he was a Machine Learning Engineer at Capital One.
*This is an affiliate program. We receive a small portion of the final sale at no extra cost to you.
Поделиться в:
Доступные форматы для скачивания:
Скачать видео mp4
Информация по загрузке:
Скачать аудио mp3
Похожие видео
array(10) {
[0]=>
object(stdClass)#5090 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "75uBcITe0gU"
["related_video_title"]=>
string(58) "6 Langchain Document Loaders to Master (Beginner Friendly)"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(24) "Ryan & Matt Data Science"
}
[1]=>
object(stdClass)#5063 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "Pk2BeaGbcTE"
["related_video_title"]=>
string(34) "The BEST Way to Chunk Text for RAG"
["posted_time"]=>
string(27) "6 месяцев назад"
["channelName"]=>
string(10) "Adam Lucek"
}
[2]=>
object(stdClass)#5088 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "ORSb_LNws4k"
["related_video_title"]=>
string(66) "iPadOS 26 is perfect for the larger iPad model that’s coming"
["posted_time"]=>
string(21) "7 дней назад"
["channelName"]=>
string(18) "Coding With Nobody"
}
[3]=>
object(stdClass)#5095 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "8OJC21T2SL4"
["related_video_title"]=>
string(44) "The 5 Levels Of Text Splitting For Retrieval"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(12) "Greg Kamradt"
}
[4]=>
object(stdClass)#5074 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "qXcMGBj4i3A"
["related_video_title"]=>
string(69) "Learn to Build Exciting LLM applications with Langchain and Streamlit"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(24) "Ryan & Matt Data Science"
}
[5]=>
object(stdClass)#5092 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "WVUITosaG-g"
["related_video_title"]=>
string(51) "Langchain Agents [2025 UPDATE] - Beginner Friendly"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(24) "Ryan & Matt Data Science"
}
[6]=>
object(stdClass)#5087 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "ZCSsIkyCZk4"
["related_video_title"]=>
string(64) "FAISS Vector Library with LangChain and OpenAI (Semantic Search)"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(24) "Ryan & Matt Data Science"
}
[7]=>
object(stdClass)#5097 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "8BV9TW490nQ"
["related_video_title"]=>
string(68) "Learn LangChain in 7 Easy Steps - Full Interactive Beginner Tutorial"
["posted_time"]=>
string(28) "11 месяцев назад"
["channelName"]=>
string(13) "Rabbitmetrics"
}
[8]=>
object(stdClass)#5073 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "KFgwXXWT7sQ"
["related_video_title"]=>
string(170) "ИИ-агенты — вот что действительно изменит разработку. Пишем ИИ-агент на Python, LangChain и GigaChat"
["posted_time"]=>
string(23) "1 месяц назад"
["channelName"]=>
string(29) "Диджитализируй!"
}
[9]=>
object(stdClass)#5091 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "j1XRLh7yzzY"
["related_video_title"]=>
string(79) "Practical RAG - Choosing the Right Embedding Model, Chunking Strategy, and More"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(13) "AI User Group"
}
}