Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

TCOptRob Seminar: Scalable Safety Analysis and Control Synthesis by Sylvia Herbert

Автор: Model-Based Optimization

Загружено: 2025-04-21

Просмотров: 266

Описание:

TCOptRob Seminar: Scalable Safety Analysis and Control Synthesis for Nonlinear Differential Games by Sylvia Herbert of the University of California, San Diego (UCSD). https://sylviaherbert.com/

00:00 Intro
01:10 The Talk
44:30 Q&A

Abstract:
Hamilton-Jacobi (HJ) Reachability analysis is a powerful tool for solving differential games with bounded inputs; it can provide safety and liveness guarantees for each player and the corresponding optimal control law. However, control theoretic approaches to solving nonlinear differential games struggle with the “curse of dimensionality.” We will explore two methods for overcoming this issue, one with conservative guarantees and one with probabilistic guarantees: Recently, the applied math community has been exploring the use of the Hopf formula for efficiently solving linear differential games with bounded inputs via ADMM. We will show how we can lift a nonlinear game to a linear space wherein we can bound linearization error. We can then treat this error as an adversary in a linear game solvable by the Hopf formula, with results that can map back to the original space for conservative guarantees on the true nonlinear game. More recently, solving HJ reachability using model-based supervised learning via physics-informed neural networks (PINNs) has become increasingly popular because the computation time scales with complexity rather than dimensionality. However, these PINNs suffer from learning errors and catastrophic forgetting. We will show how linear supervision (e.g. from the same Hopf formula above) of the nonlinear game can significantly improve the learning results, resulting in tighter probabilistic guarantees. This work was recently nominated for the Best Paper Award at the Learning for Dynamics and Control (L4DC) conference.

Biography:
Sylvia Herbert is an Assistant Professor of Mechanical and Aerospace Engineering at the University of California, San Diego. Her research focus is to enable efficient and safe decision-making in robots and other complex autonomous systems while reasoning about uncertainty in real-world environments and human interactions. These techniques are backed by both rigorous theory and physical testing on robotic platforms.

Prior to joining UCSD, Professor Herbert received her PhD in Electrical Engineering from UC Berkeley, where she studied with Professor Claire Tomlin on safe and efficient control of autonomous systems. Before that, she earned her BS/MS at Drexel University in Mechanical Engineering. She is the recipient of the ONR Young Investigator Award, 2023 IROS Robocup Best Paper Award, 2025 Learning for Dynamics and Control (L4DC) Best Paper Nomination, Hellman Fellowship, UCSD JSOE Early Career Faculty Award, UC Berkeley Chancellor’s Fellowship, NSF GRFP, UC Berkeley Outstanding Graduate Student Instructor Award, and the Berkeley EECS Demetri Angelakos Memorial Achievement Award for Altruism.

The IEEE RAS Technical Committee on Model Based Optimization for Robotics is focused on building and supporting a community of researchers and practioners focused on the development and application of model-based optimization techniques for the generation and control of dynamic behaviors in robotics and their practical implementation. You can find our more about the TC at: https://www.ieee-ras.org/model-based-....

Copyright (c) 2025 TCOptRob. All rights reserved.
License: CC BY-NC-SA 4.0

TCOptRob Seminar: Scalable Safety Analysis and Control Synthesis by Sylvia Herbert

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

TCOptRob Seminar: Motor Intelligence in Soft & Unconventional Robots by Cosimo Della Santina

TCOptRob Seminar: Motor Intelligence in Soft & Unconventional Robots by Cosimo Della Santina

Stanford Seminar - Blending Data-Driven CBF Approximations with HJ Reachability

Stanford Seminar - Blending Data-Driven CBF Approximations with HJ Reachability

Blending methods to generate safe controllers. By Dr. Sylvia Herbert (AA598 Autumn 2024)

Blending methods to generate safe controllers. By Dr. Sylvia Herbert (AA598 Autumn 2024)

TCOptRob Seminar: Learning-Based Control for Legged Robots by Jemin Hwangbo of KAIST

TCOptRob Seminar: Learning-Based Control for Legged Robots by Jemin Hwangbo of KAIST

Как работает музыка? От ритма и волновой физики до рекомендаций Яндекс и нейросетей

Как работает музыка? От ритма и волновой физики до рекомендаций Яндекс и нейросетей

Autonomy Talks - Sylvia Herbert: Connections between HJ Reachability Analysis and CBF

Autonomy Talks - Sylvia Herbert: Connections between HJ Reachability Analysis and CBF

TCOptRob Seminar: Globally Optimal and Safe Robot Control by Andrea Del Prete (University of Trento)

TCOptRob Seminar: Globally Optimal and Safe Robot Control by Andrea Del Prete (University of Trento)

Все, что вам нужно знать о теории управления

Все, что вам нужно знать о теории управления

Safety-Critical Systems | Sylvia Herbert | RoboLaunch 2024

Safety-Critical Systems | Sylvia Herbert | RoboLaunch 2024

TCOptRob Seminar: Learning complex behaviors with nonlinear MPC by Ludovic Righetti of NYU

TCOptRob Seminar: Learning complex behaviors with nonlinear MPC by Ludovic Righetti of NYU

TCOptRob Seminar: On the Geometric Foundations of Continuous Control by Nathan Ratliff

TCOptRob Seminar: On the Geometric Foundations of Continuous Control by Nathan Ratliff

Nonlinear Control: Hamilton Jacobi Bellman (HJB) and Dynamic Programming

Nonlinear Control: Hamilton Jacobi Bellman (HJB) and Dynamic Programming

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Во всем виноват любимый Зеленского?

Во всем виноват любимый Зеленского?

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Physics-Informed Neural Networks (PINNs) - An Introduction - Ben Moseley | Jousef Murad

Sylvia Herbert:

Sylvia Herbert: "Scalability for Hamilton-Jacobi Reachability Analysis: Decomposition, Warm-Star..."

Разговор, который хотелось услышать в школе / вДудь

Разговор, который хотелось услышать в школе / вДудь

33 продукта из отходов, которые вы едите каждый день

33 продукта из отходов, которые вы едите каждый день

TCOptRob Seminar: Carlos Mastalli and Majid Khadiv

TCOptRob Seminar: Carlos Mastalli and Majid Khadiv

HJB equations, dynamic programming principle and stochastic optimal control 1 - Andrzej Święch

HJB equations, dynamic programming principle and stochastic optimal control 1 - Andrzej Święch

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]