Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Vanishing/Exploding Gradients - An Old Problem results from backpropagation (Deep Learning) | NerdML

Автор: NerdML

Загружено: 2021-02-17

Просмотров: 1980

Описание:

In this video we will understand what Vanishing Gradients & Exploding Gradients are & the problems they cause during training. How can we fix the vanishing gradient problem & exploding gradient problem with your network.
If deep neural networks are so powerful, why aren’t they used more often? The reason is that they are very difficult to train due to an issue known as the vanishing gradient & exploding gradient. Vanishing Gradient Problem occurs when we try to train a Neural Network model using Gradient based optimization techniques. Vanishing Gradient Problem was actually a major problem 10 years back to train a Deep neural Network Model due to the long training process and the degraded accuracy of the Model.


-------------
Timeline:
Start ( 0:00 )
1).​ What is a Neural Network? ( 1:19 )
2). Backpropagation Intuition ( 3:14 )
3). Derivation of Sigmoid Activation Function ( 5:14 )
4). Vanishing Gradient Problem & it's Solution ( 8:14 )
5). Exploding Gradient Problem & it's Solution ( 10:46 )

-------------


To train a neural network over a large set of labelled data, you must continuously compute the difference between the network’s predicted output and the actual output. This difference is called the cost, and the process for training a net is known as backpropagation, or backprop. During backprop, weights and biases are tweaked slightly until the lowest possible cost is achieved. An important aspect of this process is the gradient, which is a measure of how much the cost changes with respect to a change in a weight or bias value.

Backprop suffers from a fundamental problem known as the vanishing gradient. During training, the gradient decreases in value back through the net. Because higher gradient values lead to faster training, the layers closest to the input layer take the longest to train. Unfortunately, these initial layers are responsible for detecting the simple patterns in the data, while the later layers help to combine the simple patterns into complex patterns. Without properly detecting simple patterns, a deep net will not have the building blocks necessary to handle the complexity. This problem is the equivalent of to trying to build a house without the proper foundation.

Have you ever had this difficulty while using backpropagation? Please comment and let me know your thoughts.

So what causes the gradient to decay back through the net? Backprop, as the name suggests, requires the gradient to be calculated first at the output layer, then backwards across the net to the first hidden layer. Each time the gradient is calculated, the net must compute the product of all the previous gradients up to that point. Since all the gradients are fractions between 0 and 1 – and the product of fractions in this range results in a smaller fraction – the gradient continues to shrink.

For example, if the first two gradients are one fourth and one third, then the next gradient would be one fourth of one third, which is one twelfth. The following gradient would be one twelfth of one fourth, which is one forty-eighth, and so on. Since the layers near the input layer receive the smallest gradients, the net would take a very long time to train. As a subsequent result, the overall accuracy would suffer.


Do subscribe to my channel and hit the bell icon to never miss an update in the future:
   / @nerdml  

Please find the previous Video link -
What is Forward Propagation & backpropagation calculus really doing in Deep learning? | Demystified | NerdML :    • What is Forward Propagation & backpropagat...  

Machine Learning Tutorial Playlist:    • Machine Learning Tutorial  

Deep Learning Tutorial Playlist :    • Deep Learning Tutorial  

Creator : Rahul Saini
Please write back to me at [email protected] for more information

Instagram:   / 96_saini  
Facebook:   / rahulsainipusa  
LinkedIn:   / rahul-s-22ba1993  

deep learning
gradient descent
image recognition
backpropagation
multilayer perceptron
deep learning tutorial
gradient
neural network
artificial intelligence
machine learning
deep neural networks
artificialintelligence
machinelearning
what solves vanishing gradient problem
vanishing gradient problem pdf
why residual block can avoid vanishing gradient problem
how does relu solve vanishing gradient
cs231n vanishing gradient
relu exploding gradient
exploding gradient wiki
exploding gradient sigmoid

#VanishingGradient, #ExplodingGradient, #NerdML

Vanishing/Exploding Gradients - An Old Problem results from backpropagation (Deep Learning) | NerdML

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

A friendly introduction to Convolutional Neural Networks (CNN) & Image Recognition explained| NerdML

A friendly introduction to Convolutional Neural Networks (CNN) & Image Recognition explained| NerdML

Объяснение инициализации веса | Способ решения проблемы исчезающего градиента

Объяснение инициализации веса | Способ решения проблемы исчезающего градиента

Exercise 2.4 Q#2 (Part 5, 6 & 7) | Class 11 Maths | Determinants | Easy Urdu Explanation

Exercise 2.4 Q#2 (Part 5, 6 & 7) | Class 11 Maths | Determinants | Easy Urdu Explanation

Исчезающие/взрывающиеся градиенты (C2W1L10)

Исчезающие/взрывающиеся градиенты (C2W1L10)

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Tutorial 7- Vanishing Gradient Problem

Tutorial 7- Vanishing Gradient Problem

Объяснение исчезающего и взрывающегося градиента | Проблема, возникающая в результате обратного р...

Объяснение исчезающего и взрывающегося градиента | Проблема, возникающая в результате обратного р...

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Физически-информированные нейронные сети (PINN) [Машинное обучение с учетом физики]

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Что происходит с нейросетью во время обучения?

Что происходит с нейросетью во время обучения?

Tutorial 6- Vanishing Gradient Problem in Multilayered Neural Network- Krish Naik Hindi

Tutorial 6- Vanishing Gradient Problem in Multilayered Neural Network- Krish Naik Hindi

Предел развития НЕЙРОСЕТЕЙ

Предел развития НЕЙРОСЕТЕЙ

ResNet (на самом деле) объясняется менее чем за 10 минут

ResNet (на самом деле) объясняется менее чем за 10 минут

Deep Learning Demystified: Vanishing & Exploding Gradients Problems

Deep Learning Demystified: Vanishing & Exploding Gradients Problems

Что такое LSTM с примерами | Долговременная кратковременная память | Рекуррентные нейронные сети ...

Что такое LSTM с примерами | Долговременная кратковременная память | Рекуррентные нейронные сети ...

Vanishing and exploding gradients | Deep Learning Tutorial 35 (Tensorflow, Keras & Python)

Vanishing and exploding gradients | Deep Learning Tutorial 35 (Tensorflow, Keras & Python)

Backpropagation : Data Science Concepts

Backpropagation : Data Science Concepts

An Old Problem - Ep. 5 (Deep Learning SIMPLIFIED)

An Old Problem - Ep. 5 (Deep Learning SIMPLIFIED)

Глава Neuralink: чип в мозге заменит вам телефон

Глава Neuralink: чип в мозге заменит вам телефон

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]