Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

126 - Generative Adversarial Networks (GAN) using keras in python

Автор: DigitalSreeni

Загружено: 2020-05-25

Просмотров: 91147

Описание:

Generative adversarial networks (GANs) are deep learning architectures that use two neural networks (Generator and Discriminator), competing one against the other. The generator tries to create realistic looking fake data (e.g. images) and the discriminator tries to classify whether the data is real or fake. After a few thousand (or million) epochs, the generator trained model can be used to create new fake data that can pass for real data.

This tutorial the implementation of GAN using Keras in Python. It uses fully connected dense layers for both the generator and discriminator. It also explains the use of trained model in generating realistic looking fake handwritten digits.

References from the video:
https://www.thispersondoesnotexist.com/
http://www.wisdom.weizmann.ac.il/~vis...

Code generated in the video can be downloaded from here: https://github.com/bnsreenu/python_fo...

126 - Generative Adversarial Networks (GAN) using keras in python

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

247 - Conditional GANs and their applications

247 - Conditional GANs and their applications

125 - What are Generative Adversarial Networks (GAN)?

125 - What are Generative Adversarial Networks (GAN)?

FIDLE / Generative Adversarial Networks (GAN)

FIDLE / Generative Adversarial Networks (GAN)

250 — Преобразование изображения в изображение с помощью Pix2Pix GAN

250 — Преобразование изображения в изображение с помощью Pix2Pix GAN

GANs Implementation: Creating Faces that Don't Exist

GANs Implementation: Creating Faces that Don't Exist

Generative Adversarial Networks (GAN)

Generative Adversarial Networks (GAN)

Understanding GANs (Generative Adversarial Networks)

Understanding GANs (Generative Adversarial Networks)

248 - keras implementation of GAN to generate cifar10 images

248 - keras implementation of GAN to generate cifar10 images

Building our first simple GAN

Building our first simple GAN

Поймите математику и теорию GAN примерно за 10 минут

Поймите математику и теорию GAN примерно за 10 минут

Generative Adversarial Networks - Implementing a GAN in Keras/Tensorflow

Generative Adversarial Networks - Implementing a GAN in Keras/Tensorflow

Обучите свою первую GAN в Tensorflow | Полное руководство по Python |

Обучите свою первую GAN в Tensorflow | Полное руководство по Python |

256 - Super resolution GAN (SRGAN) in keras

256 - Super resolution GAN (SRGAN) in keras

MIT 6.S191 (2023): Глубокое генеративное моделирование

MIT 6.S191 (2023): Глубокое генеративное моделирование

DSPT#76 Webinar - Synthetic tabular data generation

DSPT#76 Webinar - Synthetic tabular data generation

Building a GAN From Scratch With PyTorch | Theory + Implementation

Building a GAN From Scratch With PyTorch | Theory + Implementation

257 - Exploring GAN latent space to generate images with desired features​

257 - Exploring GAN latent space to generate images with desired features​

[Classic] Generative Adversarial Networks (Paper Explained)

[Classic] Generative Adversarial Networks (Paper Explained)

GANs explained | Generative Adversarial Networks video with showcase!

GANs explained | Generative Adversarial Networks video with showcase!

Generating Faces with a Generative Adversarial Networks (GAN) in Keras/Tensorflow 2.0 (7.2)

Generating Faces with a Generative Adversarial Networks (GAN) in Keras/Tensorflow 2.0 (7.2)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]