Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Deep learning on graphs: successes, challenges | Graph Neural Networks | Michael Bronstein

Автор: SAIConference

Загружено: 2020-09-04

Просмотров: 46039

Описание:

Conference Website: https://saiconference.com/IntelliSys

Deep learning on graphs and network-structured data has recently become one of the hottest topics in machine learning. Graphs are powerful mathematical abstractions that can describe complex systems of relations and interactions in fields ranging from biology and high-energy physics to social science and economics. In this talk, I will outline the basic methods, applications, challenges and possible future directions in the field.

About the Speaker: Michael Bronstein is a professor at Imperial College London, where he holds the Chair in Machine Learning and Pattern Recognition, and Head of Graph Learning Research at Twitter. Michael received his PhD from the Technion in 2007. He has held visiting appointments at Stanford, MIT, Harvard, and Tel Aviv University, and has also been affiliated with three Institutes for Advanced Study (at TU Munich as a Rudolf Diesel Fellow (2017-), at Harvard as a Radcliffe fellow (2017-2018), and at Princeton (2020)). Michael is the recipient of five ERC grants, Fellow of IEEE, IAPR, and ELLIS, ACM Distinguished Speaker, and World Economic Forum Young Scientist. In addition to his academic career, Michael is a serial entrepreneur and founder of multiple startup companies, including Novafora, Invision (acquired by Intel in 2012), Videocites, and Fabula AI (acquired by Twitter in 2019). He has previously served as Principal Engineer at Intel Perceptual Computing and was one of the key developers of the Intel RealSense technology.

Deep learning on graphs: successes, challenges | Graph Neural Networks | Michael Bronstein

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Explainable Machine Learning - Freddy Lecue, Chief AI Scientist CortAIx

Explainable Machine Learning - Freddy Lecue, Chief AI Scientist CortAIx

Theoretical Foundations of Graph Neural Networks

Theoretical Foundations of Graph Neural Networks

Цепи Маркова — математика предсказаний [Veritasium]

Цепи Маркова — математика предсказаний [Veritasium]

Pushing the boundaries of AI research at Qualcomm - Max Welling (University of Amsterdam & Qualcomm)

Pushing the boundaries of AI research at Qualcomm - Max Welling (University of Amsterdam & Qualcomm)

Michael Bronstein - Geometric Deep Learning | MLSS Kraków 2023

Michael Bronstein - Geometric Deep Learning | MLSS Kraków 2023

Intro to graph neural networks (ML Tech Talks)

Intro to graph neural networks (ML Tech Talks)

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

Neural and Non-Neural AI, Reasoning, Transformers, and LSTMs

ICLR 2021 Keynote -

ICLR 2021 Keynote - "Geometric Deep Learning: The Erlangen Programme of ML" - M Bronstein

Liquid Neural Networks, A New Idea That Allows AI To Learn Even After Training

Liquid Neural Networks, A New Idea That Allows AI To Learn Even After Training

Момент, когда мы перестали понимать ИИ [AlexNet]

Момент, когда мы перестали понимать ИИ [AlexNet]

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Geometric Deep Learning | Michael Bronstein || Radcliffe Institute

Geometric Deep Learning | Michael Bronstein || Radcliffe Institute

Graph Neural Networks in Computational Biology: A Personal Perspective - Petar Veličković

Graph Neural Networks in Computational Biology: A Personal Perspective - Petar Veličković

Архитектура памяти на основе нейробиологии. Моя система локального обучения ИИ без файн-тюнинга!

Архитектура памяти на основе нейробиологии. Моя система локального обучения ИИ без файн-тюнинга!

Graph Neural Networks - a perspective from the ground up

Graph Neural Networks - a perspective from the ground up

Learning the Structure of Graph Neural Networks | Mathias Niepert | heidelberg.ai

Learning the Structure of Graph Neural Networks | Mathias Niepert | heidelberg.ai

An Introduction to Graph Neural Networks: Models and Applications

An Introduction to Graph Neural Networks: Models and Applications

AMMI Course

AMMI Course "Geometric Deep Learning" - Lecture 1 (Introduction) - Michael Bronstein

A Survey on Graph Neural Networks for Time Series

A Survey on Graph Neural Networks for Time Series

MIT 6.S191: Convolutional Neural Networks

MIT 6.S191: Convolutional Neural Networks

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]