Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Interpretable Machine Learning with SymbolicRegression.jl | Miles Cranmer | JuliaCon 2023

Автор: The Julia Programming Language

Загружено: 2023-08-29

Просмотров: 4692

Описание:

SymbolicRegression.jl is a state-of-the-art symbolic regression library written from scratch in Julia using a custom evolutionary algorithm. The software emphasizes high-performance distributed computing, and can find arbitrary symbolic expressions to optimize a user-defined objective – thus offering a very interpretable type of machine learning. SymbolicRegression.jl and its Python frontend PySR have been used for model discovery in over 30 research papers, from astrophysics to economics.

SymbolicRegression.jl is an open-source library for practical symbolic regression, a type of machine learning that discovers human-interpretable symbolic models. SymbolicRegression.jl was developed to democratize and popularize symbolic regression for the sciences, and is built on a high-performance distributed backend, a flexible search algorithm, and interfaces with several deep learning packages. The hand-rolled internal search algorithm is a mixed evolutionary algorithm, which consists of a unique evolve-simplify-optimize loop, designed for optimization of unknown real-valued constants in newly-discovered empirical expressions. The backend is highly optimized, capable of fusing user-defined operators into SIMD kernels at runtime with LoopVectorization.jl, performing automatic differentiation with Zygote.jl, and distributing populations of expressions to thousands of cores across a cluster using ClusterManagers.jl. In describing this software, I will also share a new benchmark, “EmpiricalBench,” to quantify the applicability of symbolic regression algorithms in science. This benchmark measures recovery of historical empirical equations from original and synthetic datasets.

In this talk, I will describe the nuts and bolts of the search algorithm, its efficient evaluation scheme, DynamicExpressions.jl, and how SymbolicRegression.jl may be used in scientific workflows. I will review existing applications of the software (https://astroautomata.com/PySR/papers/). I will also discuss interfaces with other Julia libraries, including SymbolicUtils.jl, as well as SymbolicRegression.jl's PyJulia-enabled link to the ScikitLearn ecosystem in Python.

Time Stamps:
00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/JuliaCommunity/You...

Interested in improving the auto generated captions? Get involved here: https://github.com/JuliaCommunity/You...

Interpretable Machine Learning with SymbolicRegression.jl | Miles Cranmer | JuliaCon 2023

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Discrete Element Sea-Ice Modeling in Julia: Successes and Challenges | Skylar Gering | JuliaCon 2023

Discrete Element Sea-Ice Modeling in Julia: Successes and Challenges | Skylar Gering | JuliaCon 2023

Symbolic Regression for Model Discovery in Python and Julia

Symbolic Regression for Model Discovery in Python and Julia

This Simple Optimizer Is Revolutionizing How We Train AI [Muon]

This Simple Optimizer Is Revolutionizing How We Train AI [Muon]

Python Symbolic Regression (PySR) [Physics Informed Machine Learning]

Python Symbolic Regression (PySR) [Physics Informed Machine Learning]

Как происходит модернизация остаточных соединений [mHC]

Как происходит модернизация остаточных соединений [mHC]

Почему RAG терпит неудачу — как CLaRa устраняет свой главный недостаток

Почему RAG терпит неудачу — как CLaRa устраняет свой главный недостаток

Простое объяснение автоэнкодеров

Простое объяснение автоэнкодеров

Symbolic Regression with HeuristicLab

Symbolic Regression with HeuristicLab

Julia в академической среде: учебники, курсы Стэнфорда и будущее | Мосс | JuliaCon Global 2025

Julia в академической среде: учебники, курсы Стэнфорда и будущее | Мосс | JuliaCon Global 2025

[08x10] Intro to Probabilistic Programming in Julia using Turing.jl and Pluto

[08x10] Intro to Probabilistic Programming in Julia using Turing.jl and Pluto

ETH Zürich AISE: Symbolic Regression and Model Discovery

ETH Zürich AISE: Symbolic Regression and Model Discovery

Кто пишет код лучше всех? Сравнил GPT‑5.2, Opus 4.5, Sonnet 4.5, Gemini 3, Qwen 3 Max, Kimi, GLM

Кто пишет код лучше всех? Сравнил GPT‑5.2, Opus 4.5, Sonnet 4.5, Gemini 3, Qwen 3 Max, Kimi, GLM

Accelerating Machine Learning in Julia using Lux & Reactant | Pal | JuliaCon Global 2025

Accelerating Machine Learning in Julia using Lux & Reactant | Pal | JuliaCon Global 2025

«Я хочу, чтобы Llama3 работала в 10 раз лучше, используя мои личные знания» — Local Agentic RAG с...

«Я хочу, чтобы Llama3 работала в 10 раз лучше, используя мои личные знания» — Local Agentic RAG с...

Workshop 2: An Introduction to Symbolic Regression with PySR and SymbolicRegression.jl

Workshop 2: An Introduction to Symbolic Regression with PySR and SymbolicRegression.jl

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

Deep Symbolic Regression: Recovering Math Expressions from Data via Risk-Seeking Policy Gradients

Deep Symbolic Regression: Recovering Math Expressions from Data via Risk-Seeking Policy Gradients

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

ЛЕКЦИЯ ПРО НАДЁЖНЫЕ ШИФРЫ НА КОНФЕРЕНЦИИ БАЗОВЫХ ШКОЛ РАН В ТРОИЦКЕ

Create Regression models automatically using TuringBot

Create Regression models automatically using TuringBot

DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’

DDPS | ‘Physics Informed Machine Learning through Symbolic Regression’

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com