Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Ben Grimmer - "Optimizing Optimization Methods, To and Beyond Minimax Optimality"

Автор: UWMadison SILO Seminar

Загружено: 2025-04-30

Просмотров: 152

Описание:

Time: Wednesday, April 30th, 12:30-1:30 pm

Speaker: Ben Grimmer (JHU)

Abstract:
This talk will take up the task of designing the provably best possible gradient method for smooth convex optimization. Methods with big-O optimal worst-case guarantees were (famously) discovered in the 80s by Nesterov. Methods with exactly minimax optimal worst-case guarantees were developed in the last decade. As a first result, we will present a “subgame perfect” method that is not only optimal against a worst-case problem instance but also optimally leverages all gradient information revealed at each step. This corresponds to being dynamically minimax optimal, or in game theory terms, provides us with a subgame perfect strategy for optimization. Besides attaining this high standard (beyond minimax optimality), our subgame perfect gradient method is also very fast. As a second result, we will address the problem of optimally selecting stepsizes for gradient descent. A construction and analysis of the (conjectured) minimax optimal stepsizes will be given. These optimized stepsizes arise from a beautiful fractal/dynamic programming construction.

Bio:
Ben Grimmer is an assistant professor of applied mathematics and statistics at Johns Hopkins University, supported by AFOSR, NSF, and as a Sloan Fellow. Prior to joining Hopkins, Ben did his PhD at Cornell, advised by James Renegar and Damek Davis, spending a couple of semesters with Google Research and Simons. Ben’s work primarily focuses on novel methods for the design and analysis of first-order methods. Some of his recent computer-assisted works have received substantial interest, being featured in popular mathematics venues like Quanta.

Ben Grimmer - "Optimizing Optimization Methods, To and Beyond Minimax Optimality"

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Trevor Campbell -

Trevor Campbell - "Automating Statistical Inference for Modern Probabilistic Models

Peter Frazier -

Peter Frazier - "Bayesian Preference Exploration: Making Optimization Accessible to Non-Experts"

Dimitris Papailiopoulos -

Dimitris Papailiopoulos - "Self-Improving Transformers: Overcoming Length Generalization Challenges"

19. Subgame perfect equilibrium: matchmaking and strategic investments

19. Subgame perfect equilibrium: matchmaking and strategic investments

Michael W. Mahoney -

Michael W. Mahoney - "Random Matrix Theory and Modern Machine Learning"

Kaiqing Zhang - “Towards Principled AI-Agents with Decentralized and Asymmetric Information”

Kaiqing Zhang - “Towards Principled AI-Agents with Decentralized and Asymmetric Information”

Subgame Perfection and Backwards Induction (AGT 24)

Subgame Perfection and Backwards Induction (AGT 24)

Subgame Perfect Nash Equilibrium

Subgame Perfect Nash Equilibrium

Отъём жилья. Не только Долина. Статус S09E15

Отъём жилья. Не только Долина. Статус S09E15

Rene Vidal (Johns Hopkins Univ):

Rene Vidal (Johns Hopkins Univ): "Optimization Algorithms to Continuous Dynamical Systems"

Выпуклость и принцип двойственности

Выпуклость и принцип двойственности

Jeff Schneider -

Jeff Schneider - "Reinforcement Learning and Bayesian Optimization for Nuclear Fusion"

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Поправки в Налоговый Кодекс приняли. Разбираем изменения

Вы думали, что допинг — это плохо? Подождите, пока не услышите об электромагнитных велосипедах.

Вы думали, что допинг — это плохо? Подождите, пока не услышите об электромагнитных велосипедах.

20. Subgame perfect equilibrium: wars of attrition

20. Subgame perfect equilibrium: wars of attrition

Debdeep Pati -

Debdeep Pati - "Variational inference – reconciling statistical and convergence guarantees"

Sujay Sanghavi -

Sujay Sanghavi - "Faster Diffusion Language Models"

Conjugate gradient method

Conjugate gradient method

Arash Amini -

Arash Amini - "Polynomial Graph Neural Networks: Theoretical Limits and Graph Noise Impact"

Backwards Induction Game Tree

Backwards Induction Game Tree

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]