How Ramanujan Solved the Impossible: √(1+2√(1+3√... )) = ... ?
Автор: Simple math for all
Загружено: 2026-01-24
Просмотров: 74
Most people see this expression and think it explodes to infinity:
√(1 + 2√(1 + 3√(1 + 4√(1 + 5√(1 + ...)))))
But mathematician Srinivasa Ramanujan proved it equals exactly 3. In this video, I break down his elegant proof using just one simple algebraic identity: n² - 1 = (n-1)(n+1).
No advanced mathematics required—just the beauty of mathematical patterns hidden in plain sight.
🔑 KEY CONCEPTS:
Infinite nested radicals
Recursive substitution
The difference of squares formula
Ramanujan's mathematical intuition
📚 SOURCES & FURTHER READING:
Ramanujan's Notebooks:
Ramanujan, S. (1957). "Notebooks (2 volumes)." Tata Institute of Fundamental Research, Bombay.
Books on Ramanujan:
Kanigel, R. (1991). "The Man Who Knew Infinity: A Life of the Genius Ramanujan." Charles Scribner's Sons.
Hardy, G.H. (1940). "Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work." Cambridge University Press.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: