Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

A friendly introduction to distributed training (ML Tech Talks)

Автор: TensorFlow

Загружено: 2021-12-30

Просмотров: 52022

Описание:

Google Cloud Developer Advocate Nikita Namjoshi introduces how distributed training models can dramatically reduce machine learning training times, explains how to make use of multiple GPUs with Data Parallelism vs Model Parallelism, and explores Synchronous vs Asynchronous Data Parallelism.

Mesh TensorFlow → https://goo.gle/3sFPrHw
Distributed Training with Keras tutorial → https://goo.gle/3FE6QEa
GCP Reduction Server Blog → https://goo.gle/3EEznYB
Multi Worker Mirrored Strategy tutorial → https://goo.gle/3JkQT7Y
Parameter Server Strategy tutorial → https://goo.gle/2Zz3UrW
Distributed training on GCP Demo → https://goo.gle/3pABNDE

Chapters:
0:00 - Introduction
00:17 - Agenda
00:37 - Why distributed training?
1:49 - Data Parallelism vs Model Parallelism
6:05 - Synchronous Data Parallelism
18:20 - Asynchronous Data Parallelism
23:41 Thank you for watching

Watch more ML Tech Talks → https://goo.gle/ml-tech-talks
Subscribe to TensorFlow → https://goo.gle/TensorFlow


#TensorFlow #MachineLearning #ML


product: TensorFlow - General;

A friendly introduction to distributed training (ML Tech Talks)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

How to make TensorFlow models run faster on GPUs

How to make TensorFlow models run faster on GPUs

Intro to graph neural networks (ML Tech Talks)

Intro to graph neural networks (ML Tech Talks)

Distributed ML Talk @ UC Berkeley

Distributed ML Talk @ UC Berkeley

Distributed Training with PyTorch: complete tutorial with cloud infrastructure and code

Distributed Training with PyTorch: complete tutorial with cloud infrastructure and code

Transfer learning and Transformer models (ML Tech Talks)

Transfer learning and Transformer models (ML Tech Talks)

Training LLMs at Scale - Deepak Narayanan | Stanford MLSys #83

Training LLMs at Scale - Deepak Narayanan | Stanford MLSys #83

TensorFlow from the ground up (ML Tech Talks)

TensorFlow from the ground up (ML Tech Talks)

PyTorch in 1 Hour

PyTorch in 1 Hour

Invited Talk: PyTorch Distributed (DDP, RPC) - By Facebook Research Scientist Shen Li

Invited Talk: PyTorch Distributed (DDP, RPC) - By Facebook Research Scientist Shen Li

Лучший Гайд по Kafka для Начинающих За 1 Час

Лучший Гайд по Kafka для Начинающих За 1 Час

Machine Learning Zero to Hero (Google I/O'19)

Machine Learning Zero to Hero (Google I/O'19)

Tips and tricks for distributed large model training

Tips and tricks for distributed large model training

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

How Fully Sharded Data Parallel (FSDP) works?

How Fully Sharded Data Parallel (FSDP) works?

Fast LLM Serving with vLLM and PagedAttention

Fast LLM Serving with vLLM and PagedAttention

Keras Preprocessing Layers

Keras Preprocessing Layers

Kubernetes — Простым Языком на Понятном Примере

Kubernetes — Простым Языком на Понятном Примере

DL4CV@WIS (Spring 2021) Tutorial 13: Training with Multiple GPUs

DL4CV@WIS (Spring 2021) Tutorial 13: Training with Multiple GPUs

ML Foundations for AI Engineers (in 34 Minutes)

ML Foundations for AI Engineers (in 34 Minutes)

Generative Adversarial Networks and TF-GAN (ML Tech Talks)

Generative Adversarial Networks and TF-GAN (ML Tech Talks)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]