Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Jun Yang on 6D Pose Est. for Textureless Objects on RGB Frames using MV. Optimization | AIR Seminar

Автор: AI Robotics Seminar - University of Toronto

Загружено: 2022-11-23

Просмотров: 1523

Описание:

Abstract:
6D pose estimation of textureless objects is a valuable but challenging task for many robotic applications. In this work, we propose a framework to address this challenge using only RGB images acquired from multiple viewpoints. The core idea of our approach is to decouple 6D pose estimation into a sequential two-step process, first estimating the 3D translation and then the 3D rotation of each object. This decoupled formulation first resolves the scale and depth ambiguities in single RGB images and uses these estimates to accurately identify the object orientation in the second stage, which is greatly simplified with an accurate scale estimate. Moreover, to accommodate the multi-modal distribution present in rotation space, we develop an optimization scheme that explicitly handles object symmetries and counteracts measurement uncertainties. In comparison to the state-of-the art multi-view approach, we demonstrate that the proposed approach achieves substantial improvements on a challenging 6D pose estimation dataset for textureless objects.

Paper:
Yang, Jun, et al. "6D Pose Estimation for Textureless Objects on RGB Frames using Multi-View Optimization." arXiv preprint arXiv:2210.11554 (2022). https://arxiv.org/abs/2210.11554
Yang, Jun, et al. "ROBI: A multi-view dataset for reflective objects in robotic bin-picking." 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2021. https://arxiv.org/abs/2105.04112

Bio:
Jun Yang is a fourth year Ph.D. student in the Toronto Robotic and AI Lab (TRAIL) at the University of Toronto, Aerospace Studies. His research interests include computer vision, machine learning and robotics, with a focus of active perception for robotic grasping. He has 7 years of industrial research experience. Prior to this, he received his Master degree in Electrical and Computer Engineering from University of Ottawa in 2015.

Toronto AIR Seminar:
The Toronto AI Robotics Seminar Series is a set of events featuring young robotics and AI experts. The talks are given by local as well as global speakers and organized by the Faculty and Students at University of Toronto’s Department of Computer Science. We welcome students, researchers and robotics enthusiasts from around the world to join us and interact with the Toronto Robotics Community.
Find out more at: https://robotics.cs.toronto.edu/toron...

Jun Yang on 6D Pose Est. for Textureless Objects on RGB Frames using MV. Optimization | AIR Seminar

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Jun Gao on Towards Generative Modeling of 3D Objects Learned from Images | Toronto AIR Seminar

Jun Gao on Towards Generative Modeling of 3D Objects Learned from Images | Toronto AIR Seminar

Communication, Social Media & Public Relations (BA) Program Chat

Communication, Social Media & Public Relations (BA) Program Chat

Daniel Bruder on Making Soft Robotics Less Hard | Toronto AIR Seminar

Daniel Bruder on Making Soft Robotics Less Hard | Toronto AIR Seminar

Webinar - Disability tax credit (DTC) – Fully digital application form for applicants

Webinar - Disability tax credit (DTC) – Fully digital application form for applicants

TMU School of Medicine MD Program Admissions Webinar

TMU School of Medicine MD Program Admissions Webinar

The Man Behind Google's AI Machine | Demis Hassabis Interview

The Man Behind Google's AI Machine | Demis Hassabis Interview

How to Reconcile Stripe & PayPal in QuickBooks Online

How to Reconcile Stripe & PayPal in QuickBooks Online

Advances in Diagnosing & Treating Postmenopausal Osteoporosis 2025 - Grand Rounds HHS

Advances in Diagnosing & Treating Postmenopausal Osteoporosis 2025 - Grand Rounds HHS

Bingjie Tang on Transferring Contact-Rich Assembly from Simulation to Reality | Toronto AIR Seminar

Bingjie Tang on Transferring Contact-Rich Assembly from Simulation to Reality | Toronto AIR Seminar

UofT vMPI Interview [1 Hour Webinar] - Interview Preparation (Temerty Faculty of Medicine - Toronto)

UofT vMPI Interview [1 Hour Webinar] - Interview Preparation (Temerty Faculty of Medicine - Toronto)

Become a Lawyer in Canada - OsgoodePD Info Session

Become a Lawyer in Canada - OsgoodePD Info Session

Polska na kredyt? Tusk bije rekordy zadłużenia | A.Klarenbach

Polska na kredyt? Tusk bije rekordy zadłużenia | A.Klarenbach

IHSA.ca - COR™ 2020 Orientation

IHSA.ca - COR™ 2020 Orientation

Meet a Nobel laureate: A conversation with University Professor Emeritus Geoffrey Hinton

Meet a Nobel laureate: A conversation with University Professor Emeritus Geoffrey Hinton

Create true displacement material in 3 steps! One-click tricks to fix messy UV and model topology.

Create true displacement material in 3 steps! One-click tricks to fix messy UV and model topology.

Сессия 1 CIP LTC: Учреждения длительного ухода

Сессия 1 CIP LTC: Учреждения длительного ухода

Donald Niszczyciel, czyli mental unijczyka

Donald Niszczyciel, czyli mental unijczyka

Nolan Wagener on MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control | Toronto AIR Seminar

Nolan Wagener on MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control | Toronto AIR Seminar

10 MILIARDÓW STRAT. POLSKIE STATKI POD OBCĄ BANDERĄ

10 MILIARDÓW STRAT. POLSKIE STATKI POD OBCĄ BANDERĄ

Novel Applications in 3DED with Direct Hybrid Pixel Detectors at the NYSBC MicroED Short Course

Novel Applications in 3DED with Direct Hybrid Pixel Detectors at the NYSBC MicroED Short Course

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com