Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem

Автор: Morphocular

Загружено: 2021-07-25

Просмотров: 211564

Описание:

Normally when you add up numbers, the order you do so doesn't matter and you get the same sum regardless. And, of course, the same holds true even if you add up infinitely many numbers.....
Right?

=Chapters=
0:00 - Let's rearrange a sum!
1:48 - Investigation
6:32 - Riemann Series Theorem explained visually
13:58 - Resolving objections
18:52 - A step further and a challenge
20:07 - Significance of the Riemann Series Theorem
21:47 - Final thoughts

This video is a participant in the 3Blue1Brown First Summer of Math Exposition (SoME1). You can find out more about it here:
https://www.3blue1brown.com/blog/some1
#SoME1


===============================
Want to support future videos? Become a patron at   / morphocular  
Thank you for your support!


===============================
The animations in this video were mostly made with a homemade Python library called "Morpho".
If you want to play with it, you can find it here:
https://github.com/morpho-matters/mor...

Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Navigating an Infinitely Dense Minefield | Why Measure Infinity?

Navigating an Infinitely Dense Minefield | Why Measure Infinity?

Complex Integration and Finding Zeros of the Zeta Function

Complex Integration and Finding Zeros of the Zeta Function

Complex Numbers Have More Uses Than You Think

Complex Numbers Have More Uses Than You Think

Мнимые числа реальны: #1-13 [Welch Labs]

Мнимые числа реальны: #1-13 [Welch Labs]

The Riemann Rearrangement Theorem // I can make this sum anything I want

The Riemann Rearrangement Theorem // I can make this sum anything I want

Is this one connected curve, or two? Bet you can't explain why...

Is this one connected curve, or two? Bet you can't explain why...

The Big Daddy of Infinite Integrals - Numberphile

The Big Daddy of Infinite Integrals - Numberphile

Оригинальное доказательство Эйлера Базельской проблемы: Σ(1/n²)=π²/6 — ЛУЧШЕЕ объяснение

Оригинальное доказательство Эйлера Базельской проблемы: Σ(1/n²)=π²/6 — ЛУЧШЕЕ объяснение

Euler's Formula Beyond Complex Numbers

Euler's Formula Beyond Complex Numbers

Why There's 'No' Quintic Formula (proof without Galois theory)

Why There's 'No' Quintic Formula (proof without Galois theory)

When CAN'T Math Be Generalized? | The Limits of Analytic Continuation

When CAN'T Math Be Generalized? | The Limits of Analytic Continuation

Расширение гармонических чисел до действительных чисел

Расширение гармонических чисел до действительных чисел

Can an Uncountable Sum Ever Be Finite-Valued? | Why Measure Infinity?

Can an Uncountable Sum Ever Be Finite-Valued? | Why Measure Infinity?

В чем НА САМОМ ДЕЛЕ заключается гипотеза Римана?

В чем НА САМОМ ДЕЛЕ заключается гипотеза Римана?

The Subtle Reason Taylor Series Work | Smooth vs. Analytic Functions

The Subtle Reason Taylor Series Work | Smooth vs. Analytic Functions

Лучший парадокс А – А ≠ 0

Лучший парадокс А – А ≠ 0

The Concept So Much of Modern Math is Built On | Compactness

The Concept So Much of Modern Math is Built On | Compactness

Комплексные числа. Как мнимое стало реальным // Vital Math

Комплексные числа. Как мнимое стало реальным // Vital Math

1 Billion is Tiny in an Alternate Universe: Introduction to p-adic Numbers

1 Billion is Tiny in an Alternate Universe: Introduction to p-adic Numbers

Olympiad level counting  (Generating functions)

Olympiad level counting (Generating functions)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]