Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Can an Uncountable Sum Ever Be Finite-Valued? | Why Measure Infinity?

Автор: Morphocular

Загружено: 2021-11-07

Просмотров: 88791

Описание:

Traditional infinite sums deal with only COUNTABLY infinitely many terms. But is it ever possible to add up UNCOUNTABLY many terms and get a finite sum? And if so, can it give us a way to extend the dot product from finite-dimensional vectors to functions?

=Chapters=
0:00 - Intro
1:23 - Functions as vectors
3:21 - Uncountable sums
6:45 - Analyzing an uncountable sum
10:52 - Resolution


===============================
A few sidenotes on the video:

► What I've been calling a "dot product" on functions and sequences is known more formally as an "inner product". I believe the term "dot product" is usually reserved for dealing with traditional finite-dimensional vectors.
► I described the "components" of a function as coming from each real number input you can plug in, but that was mainly to supply a hypothetical train of thought that would motivate the inquiry that followed. I think those who work in Functional Analysis usually think of function "components" in a somewhat different way (e.g. a Fourier Series decomposition).


===============================
Want to support future videos? Become a patron at   / morphocular  
Thank you for your support!


===============================
The animations in this video were mostly made with a homemade Python library called "Morpho".
If you want to play with it, you can find it here:
https://github.com/morpho-matters/mor...

Can an Uncountable Sum Ever Be Finite-Valued? | Why Measure Infinity?

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem

Can you change a sum by rearranging its numbers? --- The Riemann Series Theorem

Navigating an Infinitely Dense Minefield | Why Measure Infinity?

Navigating an Infinitely Dense Minefield | Why Measure Infinity?

The Concept So Much of Modern Math is Built On | Compactness

The Concept So Much of Modern Math is Built On | Compactness

Расширение гармонических чисел до действительных чисел

Расширение гармонических чисел до действительных чисел

Why Do Sporadic Groups Exist?

Why Do Sporadic Groups Exist?

The Ridiculous Engineering Of The World's Most Important Machine

The Ridiculous Engineering Of The World's Most Important Machine

Why is there no equation for the perimeter of an ellipse‽

Why is there no equation for the perimeter of an ellipse‽

Complex Numbers Have More Uses Than You Think

Complex Numbers Have More Uses Than You Think

Double Modular Arithmetic

Double Modular Arithmetic

The Subtle Reason Taylor Series Work | Smooth vs. Analytic Functions

The Subtle Reason Taylor Series Work | Smooth vs. Analytic Functions

1 Billion is Tiny in an Alternate Universe: Introduction to p-adic Numbers

1 Billion is Tiny in an Alternate Universe: Introduction to p-adic Numbers

Как выглядит график функции x^a, если a не является целым числом? Необычный взгляд на знакомые фу...

Как выглядит график функции x^a, если a не является целым числом? Необычный взгляд на знакомые фу...

When CAN'T Math Be Generalized? | The Limits of Analytic Continuation

When CAN'T Math Be Generalized? | The Limits of Analytic Continuation

What Lies Between a Function and Its Derivative? | Fractional Calculus

What Lies Between a Function and Its Derivative? | Fractional Calculus

Smooth Interpolation Function in One Dimension | Smooth Interpolation Function E1

Smooth Interpolation Function in One Dimension | Smooth Interpolation Function E1

Перспективный взгляд на алгебраические кривые

Перспективный взгляд на алгебраические кривые

Тригонометрия, скрывающаяся внутри факториалов (и гармонических чисел)

Тригонометрия, скрывающаяся внутри факториалов (и гармонических чисел)

Euler's Formula Beyond Complex Numbers

Euler's Formula Beyond Complex Numbers

Is this one connected curve, or two? Bet you can't explain why...

Is this one connected curve, or two? Bet you can't explain why...

How to do two (or more) integrals with just one

How to do two (or more) integrals with just one

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]