Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Artwork Personalization at Netflix | Netflix

Автор: AI Council

Загружено: 2019-01-02

Просмотров: 8445

Описание:

ABOUT THE TALK:

For many years, the main goal of the Netflix personalized recommendation system has been to get the right titles in front each of our members at the right time. But the job of recommendation does not end there. The homepage should be able to convey to the member enough evidence of why this is a good title for her, especially for shows that the member has never heard of.

One way to address this challenge is to personalize the way we portray the titles on our service. Our image personalization engine is driven by online learning and contextual bandits. Like many other Netflix machine learning algorithms, it started as a prototype and needed to transition into reliable production jobs outfitted with monitoring, alerts, model checking, retraining, detecting stale models, system resiliency, and more.

We will discuss how we approach making machine learning systems at Netflix ready for production and how we scaled our artwork personalization engine to reliably handle over 20 million personalized image requests per second.

ABOUT THE SPEAKER:

Tony is Director of Machine Learning at Netflix and is sabbatical professor at Columbia University. He served as general chair of the 2017 International Conference on Machine Learning. He has published over 100 scientific articles in the field of machine learning and has received several best paper awards. He has co-founded and advised multiple AI startups.

ABOUT DATA COUNCIL:
Data Council (https://www.datacouncil.ai/) is a community and conference series that provides data professionals with the learning and networking opportunities they need to grow their careers. Make sure to subscribe to our channel for more videos, including DC_THURS, our series of live online interviews with leading data professionals from top open source projects and startups.

FOLLOW DATA COUNCIL:
Twitter:   / datacouncilai  
LinkedIn:   / datacouncil-ai  
Facebook:   / datacouncilai  
Eventbrite: https://www.eventbrite.com/o/data-cou...

Artwork Personalization at Netflix |  Netflix

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Netflix's Recommendation Evolution by Mark Hsiao |  VideoRecSys 2023 Workshop | ACM RecSys

Netflix's Recommendation Evolution by Mark Hsiao | VideoRecSys 2023 Workshop | ACM RecSys

A Multi-Armed Bandit Framework for Recommendations at Netflix | Netflix

A Multi-Armed Bandit Framework for Recommendations at Netflix | Netflix

The Highs and Lows of Building an Adtech Data Pipeline |  TripleLift

The Highs and Lows of Building an Adtech Data Pipeline | TripleLift

How Netflix Handles Data Streams Up to 8M Events/sec

How Netflix Handles Data Streams Up to 8M Events/sec

Abstract: The Art of Design | Paula Scher: Graphic Design | FULL EPISODE | Netflix

Abstract: The Art of Design | Paula Scher: Graphic Design | FULL EPISODE | Netflix

Machine Learning Zero to Hero (Google I/O'19)

Machine Learning Zero to Hero (Google I/O'19)

Trends in Recommendation & Personalization at Netflix

Trends in Recommendation & Personalization at Netflix

How Netflix Uses Data, Surveys, and A/B Testing to Perfect Its Recommendation Algorithm

How Netflix Uses Data, Surveys, and A/B Testing to Perfect Its Recommendation Algorithm

Киберколониализм, или Почему чем яростнее беспредел, тем ближе стабилизация | Андрей Масалович

Киберколониализм, или Почему чем яростнее беспредел, тем ближе стабилизация | Андрей Масалович

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits

Deep Learning for Personalized Search and Recommender Systems part 1

Deep Learning for Personalized Search and Recommender Systems part 1

Звери как партнёры, роботы как собеседники: новая этика XXI века. Жизнь до 150 лет

Звери как партнёры, роботы как собеседники: новая этика XXI века. Жизнь до 150 лет

Machine Learning & Big Data for Music Discovery presented by Spotify

Machine Learning & Big Data for Music Discovery presented by Spotify

Что такое квантовая теория

Что такое квантовая теория

The Contextual Bandits Problem

The Contextual Bandits Problem

Serving a Billion Personalized News Feeds

Serving a Billion Personalized News Feeds

Netflix: Creative Localization at Scale :: IMUG 2017.04.20

Netflix: Creative Localization at Scale :: IMUG 2017.04.20

Как Netflix рекомендует фильмы? Факторизация матрицы

Как Netflix рекомендует фильмы? Факторизация матрицы

Music Recommendations at Spotify - Oskar Stål, Spotify

Music Recommendations at Spotify - Oskar Stål, Spotify

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

RecSys 2016: Tutorial on Lessons Learned from Building Real-life Recommender Systems

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com