Скачать
L09.6 Mixed Random Variables
Автор: MIT OpenCourseWare
Загружено: 2018-04-24
Просмотров: 37119
Описание:
MIT RES.6-012 Introduction to Probability, Spring 2018
View the complete course: https://ocw.mit.edu/RES-6-012S18
Instructor: John Tsitsiklis
License: Creative Commons BY-NC-SA
More information at https://ocw.mit.edu/terms
More courses at https://ocw.mit.edu
Доступные форматы для скачивания:
Похожие видео
array(10) {
[0]=>
object(stdClass)#4579 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "O4QYcoxuLHE"
["related_video_title"]=>
string(16) "L09.7 Joint PDFs"
["posted_time"]=>
string(19) "7 лет назад"
["channelName"]=>
string(18) "MIT OpenCourseWare"
}
[1]=>
object(stdClass)#4552 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "3MOahpLxj6A"
["related_video_title"]=>
string(30) "5. Discrete Random Variables I"
["posted_time"]=>
string(20) "12 лет назад"
["channelName"]=>
string(18) "MIT OpenCourseWare"
}
[2]=>
object(stdClass)#4577 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "OSPr6G6Ka-U"
["related_video_title"]=>
string(43) "Expected Values for Continuous Variables!!!"
["posted_time"]=>
string(21) "4 года назад"
["channelName"]=>
string(27) "StatQuest with Josh Starmer"
}
[3]=>
object(stdClass)#4584 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "-7QG2itL1u4"
["related_video_title"]=>
string(46) "Random Variables and Probability Distributions"
["posted_time"]=>
string(25) "4 месяца назад"
["channelName"]=>
string(13) "Steve Brunton"
}
[4]=>
object(stdClass)#4563 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "IaSGqQa5O-M"
["related_video_title"]=>
string(57) "Convolutions | Why X+Y in probability is a beautiful mess"
["posted_time"]=>
string(19) "1 год назад"
["channelName"]=>
string(11) "3Blue1Brown"
}
[5]=>
object(stdClass)#4581 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "efKm00MQgng"
["related_video_title"]=>
string(71) "Мы победили Jeep! Все было так просто…"
["posted_time"]=>
string(19) "3 дня назад"
["channelName"]=>
string(34) "ИЛЬДАР АВТО-ПОДБОР"
}
[6]=>
object(stdClass)#4576 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "YXLVjCKVP7U"
["related_video_title"]=>
string(50) "Probability Distribution Functions (PMF, PDF, CDF)"
["posted_time"]=>
string(19) "5 лет назад"
["channelName"]=>
string(13) "zedstatistics"
}
[7]=>
object(stdClass)#4586 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "BLTiUYC27V0"
["related_video_title"]=>
string(37) "STOCKFISH vs SENSEI: RIDICULOUS CHESS"
["posted_time"]=>
string(21) "1 день назад"
["channelName"]=>
string(11) "GothamChess"
}
[8]=>
object(stdClass)#4562 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "QxqxdQ_g2uw"
["related_video_title"]=>
string(57) "Continuous Probability Distributions - Basic Introduction"
["posted_time"]=>
string(19) "5 лет назад"
["channelName"]=>
string(27) "The Organic Chemistry Tutor"
}
[9]=>
object(stdClass)#4580 (5) {
["video_id"]=>
int(9999999)
["related_video_id"]=>
string(11) "HwkKtHLCmzo"
["related_video_title"]=>
string(30) "A Derived Distribution Example"
["posted_time"]=>
string(20) "11 лет назад"
["channelName"]=>
string(18) "MIT OpenCourseWare"
}
}
L09.7 Joint PDFs
5. Discrete Random Variables I
Expected Values for Continuous Variables!!!
Random Variables and Probability Distributions
Convolutions | Why X+Y in probability is a beautiful mess
Мы победили Jeep! Все было так просто…
Probability Distribution Functions (PMF, PDF, CDF)
STOCKFISH vs SENSEI: RIDICULOUS CHESS
Continuous Probability Distributions - Basic Introduction
A Derived Distribution Example