Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Linbo Wang: The synthetic instrument: From sparse association to sparse causation

Автор: Online Causal Inference Seminar

Загружено: 2025-10-28

Просмотров: 253

Описание:

Subscribe to the channel to get notified when we release a new video.
Like the video to tell YouTube that you want more content like this on your feed.
See our website for future seminars: https://sites.google.com/view/ocis/home
Tuesday, Oct 28, 2025: Linbo Wang (University of Toronto)
Title: The synthetic instrument: From sparse association to sparse causation
Abstract: In many observational studies, researchers are often interested in studying the effects of multiple exposures on a single outcome. Standard approaches for high-dimensional data such as the lasso assume the associations between the exposures and the outcome are sparse. These methods, however, do not estimate the causal effects in the presence of unmeasured confounding. In this paper, we consider an alternative approach that assumes the causal effects in view are sparse. We show that with sparse causation, the causal effects are identifiable even with unmeasured confounding. At the core of our proposal is a novel device, called the synthetic instrument, that in contrast to standard instrumental variables, can be constructed using the observed exposures directly. We show that under linear structural equation models, the problem of causal effect estimation can be formulated as an $\ell_0$-penalization problem, and hence can be solved efficiently using off-the-shelf software. Simulations show that our approach outperforms state-of-art methods in both low-dimensional and high-dimensional settings. We further illustrate our method using a mouse obesity dataset.
Discussant: Zijian Guo (Zhejiang University)

Linbo Wang: The synthetic instrument: From sparse association to sparse causation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Nathan Kallus: Learning Surrogate Indices from Historical A/Bs Adversarial ML for Debiased Inference

Nathan Kallus: Learning Surrogate Indices from Historical A/Bs Adversarial ML for Debiased Inference

Sizhu Lu: Estimating treatment effects with competing intercurrent events in randomized trials

Sizhu Lu: Estimating treatment effects with competing intercurrent events in randomized trials

Zijun Gao: Explainability and Analysis of Variance

Zijun Gao: Explainability and Analysis of Variance

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Sam Pimentel: Design Sensitivity and Its Implications for Weighted Observational Studies

Sam Pimentel: Design Sensitivity and Its Implications for Weighted Observational Studies

FULL: Elon Musk Makes Shocking Future Predictions At U.S.-Saudi Arabia Forum Alongside Jensen Huang

FULL: Elon Musk Makes Shocking Future Predictions At U.S.-Saudi Arabia Forum Alongside Jensen Huang

Вы просыпаетесь в 3 часа ночи? Вашему телу нужна помощь! Почему об этом не говорят?

Вы просыпаетесь в 3 часа ночи? Вашему телу нужна помощь! Почему об этом не говорят?

Lecture 21: Endogeneity and Instrument Variables

Lecture 21: Endogeneity and Instrument Variables

Jakob Runge: Causal Inference on Time Series Data with the Tigramite Package

Jakob Runge: Causal Inference on Time Series Data with the Tigramite Package

Francesco Locatello: Powering causality with ML: Discovery, Representations, and Inference

Francesco Locatello: Powering causality with ML: Discovery, Representations, and Inference

Wooseok Ha: Semi-supervised domain adaptation via fine-tuning from multiple adaptive starts

Wooseok Ha: Semi-supervised domain adaptation via fine-tuning from multiple adaptive starts

Robust Estimation under Outcome Dependent Right Censoring in Huntington Disease

Robust Estimation under Outcome Dependent Right Censoring in Huntington Disease

What taxes could rise in the budget? | BBC Newscast

What taxes could rise in the budget? | BBC Newscast

Nancy Reid -

Nancy Reid - "Models and Likelihood"

Structural Equation Modeling: what is it and what can we use it for? (part 1 of 6)

Structural Equation Modeling: what is it and what can we use it for? (part 1 of 6)

Guido Imbens: Identification of nonparametric factor models for average treatment effects

Guido Imbens: Identification of nonparametric factor models for average treatment effects

Jiaqi Zhang: Learning causal cellular programs from large-scale perturbations

Jiaqi Zhang: Learning causal cellular programs from large-scale perturbations

Почему ваши фотографии нечеткие (и как это исправить)

Почему ваши фотографии нечеткие (и как это исправить)

Regression and Matching | Causal Inference in Data Science Part 1

Regression and Matching | Causal Inference in Data Science Part 1

Joseph Antonelli: Partial identification & unmeasured confounding with multiple treatment & outcomes

Joseph Antonelli: Partial identification & unmeasured confounding with multiple treatment & outcomes

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]