Evaluating Regression Models: Metrics and Validation
Автор: GudSky Research Foundation
Загружено: 2025-10-07
Просмотров: 52
Welcome to the Gudsky AI & ML Educational Series 🚀
In this video, we dive deep into "Evaluating Regression Models" — understanding how to measure model performance using the right "metrics and validation techniques".
You’ll learn how to apply key evaluation metrics like MAE, MSE, RMSE, and R², and explore train-test splits, cross-validation, and model comparison strategies that ensure reliable predictions.
By the end of this session, you’ll know how to select the best regression model, interpret results, and avoid common pitfalls like overfitting and data leakage.
🧠 What You’ll Learn:
Key regression evaluation metrics (MAE, MSE, RMSE, R²)
Cross-validation and its importance
How to detect underfitting vs overfitting
Comparing multiple regression models
Practical demonstration using Python
🔔 Don’t forget to Like, Subscribe, and Share for more AI & ML tutorials every week!
#MachineLearning
#RegressionAnalysis
#ModelEvaluation
#MLMetrics
#DataScienceTutorial
#AIandML
#GudskyResearchFoundation
#CrossValidation
#R2Score
#MeanSquaredError
#RootMeanSquaredError
#MeanAbsoluteError
#Overfitting
#Underfitting
#PythonForDataScience
#MLAlgorithms
#PredictiveModeling
#DataScienceEducation
#MachineLearningForBeginners
#MLProjects
#LinearRegression
#MLValidation
#RegressionMetrics
#AITraining
#GudskyAI
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: