Data Preprocessing Pipeline: Cleaning, Transformation, and Feature Engineering
Автор: GudSky Research Foundation
Загружено: 2025-09-29
Просмотров: 189
Welcome to the Gudsky AI & ML Educational Series 🚀
In this session, we explore the end-to-end data preprocessing workflow — the foundation of any successful machine learning project. You’ll learn how to take raw, messy data and transform it into clean, structured, and meaningful input for ML algorithms.
🔍 What you’ll learn
✅ Importance of preprocessing in the ML pipeline
✅ Data cleaning:
Handling missing values (deletion, imputation)
Detecting and treating outliers
Removing duplicates & noise
✅ Data transformation:
Scaling and normalization
Encoding categorical variables (label vs one-hot encoding)
Feature scaling for algorithms like KNN, SVM, and regression
✅ Feature engineering:
Creating new features from existing data
Polynomial features and interaction terms
Domain-specific feature creation
✅ Best practices for preparing data before model training
🧪 Why this matters
👉 Clean data → Better models.
Without proper preprocessing, even the best ML models fail. Understanding this pipeline ensures your algorithms are efficient, accurate, and robust.
📘 Next up
Next video: Data Cleaning Project: Handling Missing Values and Outliers
🔔 Don’t forget to Like, Subscribe, and Share to keep learning with Gudsky Research Foundation’s 6-Month Applied AI & ML Course.
#DataPreprocessing #DataCleaning #DataTransformation #FeatureEngineering #MachineLearningPipeline #DataPreparation #MLPreprocessing #DataScienceBasics #DataSciencePipeline #HandlingMissingData #OutlierDetection #OutlierTreatment #DuplicateData #NoisyData #DataImbalance #DataEncoding #LabelEncoding #OneHotEncoding #FeatureScaling #Normalization #Standardization #PolynomialFeatures #InteractionTerms #DataScienceEducation #AppliedAI #GudskyAI #MLforBeginners #AIandML #MachineLearningBasics #MLDataPreparation #DataScienceLearning #MLConcepts #DataScienceTutorial #CleanDataBetterModels #MLDataCleaning #DataPreprocessingPipeline #DataQuality #MLFeatureEngineering #DataScienceProject #MLWorkflow #MLPipeline
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: