Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Architecting Agent Memory: Principles, Patterns, and Best Practices — Richmond Alake, MongoDB

Автор: AI Engineer

Загружено: 2025-06-27

Просмотров: 103333

Описание:

In the rapidly evolving landscape of agentic systems, memory management has emerged as a key pillar for building intelligent, context-aware AI Agents. Inspired by the complexity of human memory systems—such as episodic, working, semantic, and procedural memory—this talk unpacks how AI agents can achieve believability, reliability, and capability by retaining and reasoning over past experiences.

We’ll begin by establishing a conceptual framework based on real-world implementations from memory management libraries and system architectures:
Memory Components representing various structured memory types (e.g., conversation, workflow, episodic, persona)
Memory Modes reflecting operational strategies for short-term, long-term, and dynamic memory handling

Next, the talk transitions to practical implementation patterns critical for effective memory lifecycle management:

Maintaining rich conversation history and contextual awareness
Persistence strategies leveraging vector databases and hybrid search
Memory augmentation using embeddings, relevance scoring, and semantic retrieval
Production-ready practices for scaling memory in multi-agent ecosystems
We’ll also examine advanced memory strategies within agentic systems:
Memory cascading and selective deletion
Integration of tool use and persona memory
Optimizing performance around memory retrieval and LLM context window limits
Whether you're developing autonomous agents, chatbots, or complex workflow orchestration systems, this talk offers knowledge and tactical insights for building AI that can remember, adapt, and improve over time.
This session is ideal for:
AI engineers and agent framework developers
Architects designing Agentic RAG or multi-agent systems
Practitioners building contextual, personalized AI experiences
By the end of the session, you’ll understand how to leverage memory as a strategic asset in agentic design—and walk away ready to build agents that not only act and reason but also remember.


--related links--

  / richmondalake  

Architecting Agent Memory: Principles, Patterns, and Best Practices — Richmond Alake, MongoDB

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

12-факторные агенты: модели надежных приложений LLM — Декс Хорти, HumanLayer

12-факторные агенты: модели надежных приложений LLM — Декс Хорти, HumanLayer

Building Multimodal AI Agents From Scratch — Apoorva Joshi, MongoDB

Building Multimodal AI Agents From Scratch — Apoorva Joshi, MongoDB

Building and evaluating AI Agents — Sayash Kapoor, AI Snake Oil

Building and evaluating AI Agents — Sayash Kapoor, AI Snake Oil

Использование всех методов в RAG, по одному запросу за раз — Дэвид Карам, Pi Labs (бывший Google ...

Использование всех методов в RAG, по одному запросу за раз — Дэвид Карам, Pi Labs (бывший Google ...

Stop Using RAG as Memory

Stop Using RAG as Memory

Architecting Multi-Agent Systems With Andrew Ng

Architecting Multi-Agent Systems With Andrew Ng

The Philosophy of Software Design – with John Ousterhout

The Philosophy of Software Design – with John Ousterhout

Long Live Context Engineering - with Jeff Huber of Chroma

Long Live Context Engineering - with Jeff Huber of Chroma

Building Brain-Like Memory for AI | LLM Agent Memory Systems

Building Brain-Like Memory for AI | LLM Agent Memory Systems

Как мы создаем эффективных агентов: Барри Чжан, Anthropic

Как мы создаем эффективных агентов: Барри Чжан, Anthropic

AI Trends 2026: Quantum, Agentic AI & Smarter Automation

AI Trends 2026: Quantum, Agentic AI & Smarter Automation

Effective agent design patterns in production — Laurie Voss, LlamaIndex

Effective agent design patterns in production — Laurie Voss, LlamaIndex

Бесконечный программный кризис – Джейк Нейшнс, Netflix

Бесконечный программный кризис – Джейк Нейшнс, Netflix

Building a Smarter AI Agent with Neural RAG - Will Bryk, Exa.ai

Building a Smarter AI Agent with Neural RAG - Will Bryk, Exa.ai

Агенты RAG в производстве: 10 уроков, которые мы усвоили — Дауве Киела, создатель RAG

Агенты RAG в производстве: 10 уроков, которые мы усвоили — Дауве Киела, создатель RAG

AI's Memory Wall: Why Compute Grew 60,000x But Memory Only 100x (PLUS My 8 Principles to Fix)

AI's Memory Wall: Why Compute Grew 60,000x But Memory Only 100x (PLUS My 8 Principles to Fix)

Building AI Agents that actually automate Knowledge Work - Jerry Liu, LlamaIndex

Building AI Agents that actually automate Knowledge Work - Jerry Liu, LlamaIndex

20 концепций искусственного интеллекта, объясненных за 40 минут

20 концепций искусственного интеллекта, объясненных за 40 минут

Master ALL 20 Agentic AI Design Patterns [Complete Course]

Master ALL 20 Agentic AI Design Patterns [Complete Course]

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]