Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

[ICRA24] PUMA: Decentr. Uncertainty-aware Multiagent Traj. Planner w/ Image Segmentation Frame Align

Автор: AerospaceControlsLab

Загружено: 2023-11-06

Просмотров: 1315

Описание:

Submitted to The 2024 IEEE International Conference on Robotics and Automation (ICRA2024).

PUMA: Fully Decentralized Uncertainty-aware Multiagent Trajectory Planner with Real-time Image Segmentation-based Frame Alignment

Our Paper: https://arxiv.org/abs/2311.03655
Our Code: https://github.com/mit-acl/puma
ResearchGate: https://www.researchgate.net/publicat...

Fully decentralized, multiagent trajectory planners enable complex tasks like search and rescue or package delivery by ensuring safe navigation in unknown environments. However, deconflicting trajectories with other agents and en-suring collision-free paths in a fully decentralized setting is complicated by dynamic elements and localization uncertainty.

To this end, this paper presents (1) an uncertainty-aware multiagent trajectory planner and (2) an image segmentation-based frame alignment pipeline. The uncertainty-aware planner propagates uncertainty associated with the future motion of detected obstacles, and by incorporating this propagated uncertainty into optimization constraints, the planner effectively
navigates around obstacles. Unlike conventional methods that emphasize explicit obstacle tracking, our approach integrates implicit tracking. Sharing trajectories between agents can cause potential collisions due to frame misalignment. Addressing this, we introduce a novel frame alignment pipeline that rectifies inter-agent frame misalignment. This method leverages a zero-shot image segmentation model for detecting objects in the environment and a data association framework based on geometric
consistency for map alignment.

Our approach accurately aligns frames with only 0.18 m and 2.7 deg of mean frame alignment error in our most challenging simulation scenario. In addition, we conducted hardware experiments and successfully achieved
0.29 m and 2.59 de of frame alignment error. Together with the alignment framework, our planner ensures safe navigation in unknown environments and collision avoidance in decentralized settings.

[ICRA24] PUMA: Decentr. Uncertainty-aware Multiagent Traj. Planner w/ Image Segmentation Frame Align

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Robust MADER: Decentralized Multiagent Traj Planner Robust to Comm Delay in Dynamic Environments

Robust MADER: Decentralized Multiagent Traj Planner Robust to Comm Delay in Dynamic Environments

[Presentation] Deep-PANTHER: Learning-Based Perception-Aware Traj. Planner in Dynamic Environments

[Presentation] Deep-PANTHER: Learning-Based Perception-Aware Traj. Planner in Dynamic Environments

The World's Most Important Machine

The World's Most Important Machine

SP Industrial Presents High Speed DDR5 7200 64 GB CSODIMM and CUDIMM

SP Industrial Presents High Speed DDR5 7200 64 GB CSODIMM and CUDIMM

EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

2014-12-16, You Already Have it: Accuracy-Preserving Boundary Quadrature for EB Finite-Volume Scheme

2014-12-16, You Already Have it: Accuracy-Preserving Boundary Quadrature for EB Finite-Volume Scheme

Никакого газа, никаких дров 😱!! Эта простая самодельная печь отапливает дом БЕСПЛАТНО всю зиму

Никакого газа, никаких дров 😱!! Эта простая самодельная печь отапливает дом БЕСПЛАТНО всю зиму

Zaprezentowano Abramsa X: co dalej?

Zaprezentowano Abramsa X: co dalej?

Communication-Free Collective Navigation for a Swarm of UAVs via LiDAR Based Deep RL

Communication-Free Collective Navigation for a Swarm of UAVs via LiDAR Based Deep RL

Typical Soviet Apartment Tour (How Russian People REALLY Live)

Typical Soviet Apartment Tour (How Russian People REALLY Live)

PRIMER: Perception-Aware Robust Learning-based Multiagent Trajectory Planner

PRIMER: Perception-Aware Robust Learning-based Multiagent Trajectory Planner

Сделал визуализацию 4D, 5D, 6D. Как выглядит 6D мир?

Сделал визуализацию 4D, 5D, 6D. Как выглядит 6D мир?

Удивительное изобретение 65-летнего плотника поразило инженеров! Самодельные инструменты для деревоо

Удивительное изобретение 65-летнего плотника поразило инженеров! Самодельные инструменты для деревоо

I Skied Down Mount Everest (world first, no oxygen)

I Skied Down Mount Everest (world first, no oxygen)

The Strange Math That Predicts (Almost) Anything

The Strange Math That Predicts (Almost) Anything

DYNUS: Uncertainty-aware Trajectory Planner in Dynamic Unknown Environments

DYNUS: Uncertainty-aware Trajectory Planner in Dynamic Unknown Environments

Превращение монет в масонский шар | 70 часов ручной работы с металлом

Превращение монет в масонский шар | 70 часов ручной работы с металлом

Nervous System Reset | 1 hour handpan meditation | Malte Marten

Nervous System Reset | 1 hour handpan meditation | Malte Marten

Идеальное оружие: смогут ли гафниевые бомбы заменить ядерные?

Идеальное оружие: смогут ли гафниевые бомбы заменить ядерные?

TCAFF: Temporal Consistency for Robot Frame Alignment

TCAFF: Temporal Consistency for Robot Frame Alignment

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com