Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

Автор: AerospaceControlsLab

Загружено: 2023-11-12

Просмотров: 2747

Описание:

Paper link: https://ieeexplore.ieee.org/abstract/...
Project website: https://xiaoyi-cai.github.io/evora/
Published in Transactions on Robotics (T-RO)

Abstract: Traversing terrain with good traction is crucial for achieving fast off-road navigation. Instead of manually designing costs based on terrain features, existing methods learn terrain properties directly from data via self-supervision to automatically penalize trajectories moving through undesirable terrain, but challenges remain in properly quantifying and mitigating the risk due to uncertainty in the learned models. To this end, we present evidential off-road autonomy (EVORA), a unified framework to learn uncertainty-aware traction model and plan risk-aware trajectories. For uncertainty quantification, we efficiently model both aleatoric and epistemic uncertainty by learning discrete traction distributions and probability densities of the traction predictor’s latent features. Leveraging evidential deep learning, we parameterize Dirichlet distributions with the network outputs and propose a novel uncertainty-aware squared Earth Mover’s Distance loss with a closed-form expression that improves learning accuracy and navigation performance. For risk-aware navigation, the proposed planner simulates state trajectories with the worst-case expected traction to handle aleatoric uncertainty and penalizes trajectories moving through terrain with high epistemic uncertainty. Our approach is extensively validated in simulation and on wheeled and quadruped robots, showing improved navigation performance compared to methods that assume no slip, assume the expected traction, or optimize for the worst-case expected cost.

EVORA: Deep Evidential Traversability Learning for Risk-Aware Off-Road Autonomy

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Efficient Deep Learning of Robust Policies from MPC via Imitation and Tube-Guided Data Augmentation

Efficient Deep Learning of Robust Policies from MPC via Imitation and Tube-Guided Data Augmentation

STEP: Stochastic Traversability Evaluation and Planning for Safe Off-road Navigation

STEP: Stochastic Traversability Evaluation and Planning for Safe Off-road Navigation

Практикум по программированию | Самовосстанавливающиеся сообщения

Практикум по программированию | Самовосстанавливающиеся сообщения

Aerobatic maneuvers in insect-scale robots via deep-learned robust tube MPC (Science Advances 2025)

Aerobatic maneuvers in insect-scale robots via deep-learned robust tube MPC (Science Advances 2025)

Applied Intuition’s off-road stack: Powering autonomous systems on diverse terrains

Applied Intuition’s off-road stack: Powering autonomous systems on diverse terrains

Probabilistic Traversability Model for Risk-Aware Motion Planning in Off-Road Environments

Probabilistic Traversability Model for Risk-Aware Motion Planning in Off-Road Environments

MIT 6.S191: Evidential Deep Learning and Uncertainty

MIT 6.S191: Evidential Deep Learning and Uncertainty

Is Epistemic Uncertainy faithfully represented by Evidential Deep Learning Methods?

Is Epistemic Uncertainy faithfully represented by Evidential Deep Learning Methods?

IREX 2025: Будущее уже здесь | Новейшие Технологии на Выставке в Японии

IREX 2025: Будущее уже здесь | Новейшие Технологии на Выставке в Японии

Iowa Learning Farms - January 7, 2026

Iowa Learning Farms - January 7, 2026

Моделирование Монте-Карло

Моделирование Монте-Карло

11 - Modeling of a differential drive robot

11 - Modeling of a differential drive robot

PIETUSZEWSKI BOHATEREM PORTO! DEBIUT MARZENIE - WSZEDŁ I WYWALCZYŁ KARNEGO, RYWAL WYLECIAŁ Z 🟥

PIETUSZEWSKI BOHATEREM PORTO! DEBIUT MARZENIE - WSZEDŁ I WYWALCZYŁ KARNEGO, RYWAL WYLECIAŁ Z 🟥

Wyjaśniamy o co chodzi z Grenlandią. Czy naprawdę może wybuchnąć wojna USA-Dania?

Wyjaśniamy o co chodzi z Grenlandią. Czy naprawdę może wybuchnąć wojna USA-Dania?

GRAM: Generalization in Deep RL with a Robust Adaptation Module

GRAM: Generalization in Deep RL with a Robust Adaptation Module

High-speed Autonomous Navigation of 6-wheel Off-road Vehicle on Rough Trails

High-speed Autonomous Navigation of 6-wheel Off-road Vehicle on Rough Trails

PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain

PIETRA: Physics-Informed Evidential Learning for Traversing Out-of-Distribution Terrain

[Presentation] Deep-PANTHER: Learning-Based Perception-Aware Traj. Planner in Dynamic Environments

[Presentation] Deep-PANTHER: Learning-Based Perception-Aware Traj. Planner in Dynamic Environments

MECZ - ABSURD! ODWOŁANE BRAMKI, SŁUPKI, POPRZECZKI I SZALONE PARADY! SOCIEDAD - BARCELONA, SKRÓT

MECZ - ABSURD! ODWOŁANE BRAMKI, SŁUPKI, POPRZECZKI I SZALONE PARADY! SOCIEDAD - BARCELONA, SKRÓT

GRAND-SLAM: Локальная оптимизация для глобально согласованного крупномасштабного многоагентного г...

GRAND-SLAM: Локальная оптимизация для глобально согласованного крупномасштабного многоагентного г...

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com