Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Stanford Seminar - Model Predictive Control of Hybrid Dynamical Systems

Автор: Stanford Online

Загружено: 2019-11-15

Просмотров: 12243

Описание:

Ricardo Sanfelice
UC Santa Cruz

November 8, 2019
Hybrid systems model the behavior of dynamical systems in which the states can evolve continuously and, at isolate time instances, exhibit instantaneous jumps. Such systems arise when control algorithms that involve digital devices are applied to continuous-time systems, or when the intrinsic dynamics of the system itself has such hybrid behavior, for example, in mechanical systems with impacts, switching electrical circuits, spiking neurons, atc. Hybrid control may be used for improved performance and robustness properties compared to conventional control, and hybrid dynamics may be unavoidable due to the interplay between digital and analog components in a cyber-physical system. In this talk, we will introduce analysis and design tools for model predictive control (MPC) schemes for hybrid systems. We will present recently developed results on asymptotically stabilizing MPC for hybrid systems based on control Lyapunov functions. After a short overview of the state of the art on hybrid MPC, and a brief introduction to a powerful hybrid systems framework, we will present key concepts and analysis tools. After that, we will lay out the theoretical foundations of a general MPC framework for hybrid systems, with guaranteed stability and feasibility. In particular, we will characterize invariance properties of the feasible set and the terminal constraint sets, continuity of the value function, and use these results to establish asymptotic stability of the hybrid closed-loop system. To conclude, we will illustrate the framework in several applications and summarize some of the open problems, in particular, those related to computational issues.

View the full playlist:    • Stanford AA289/ENGR319 - Robotics and Auto...  

0:00 Introduction
0:45 Hybrid Predictive Control for Manipulation
8:54 Model Predictive Control (MPC) Predict system behavior, select best decision
17:39 Hybrid MPC in the Literature
19:26 Modeling Hybrid Behavior
36:36 Stability of Sample-and-Hold Control
39:16 Hybrid Basic Conditions (HBC)
40:27 Hybrid Equations (HyEQ) Toolbox The Hybrid Equations (HyEQ) Toolbox includes the following Simulink library for systems w/inputs and interconnections
40:55 Background on Model Predictive Control Most MPC strategies in the literature perform the following tasks Measure the current state of the system to control
46:35 Selecting the Prediction Horizon T
48:30 Example Implementation
50:18 Basic Conditions for Hybrid MPC
51:49 Stabilizing Ingredients for Hybrid MPC
55:09 MATLAB Implementation OPTI Toolbox
55:38 Hybrid Predictive Control for Tracking in Bipeds
56:25 Hybrid Predictive Control for Power Conversion
56:57 Hybrid Predictive Control for Motion Planning
57:18 Hybrid Predictive Control for Reactive Avoidance

Stanford Seminar - Model Predictive Control of Hybrid Dynamical Systems

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Stanford Seminar - Learning and Predictions in Autonomous Systems

Stanford Seminar - Learning and Predictions in Autonomous Systems

Data-driven MPC: From linear to nonlinear systems with guarantees

Data-driven MPC: From linear to nonlinear systems with guarantees

Stanford Seminar - Bridging model-based and data-driven reasoning for safe human-centered robotics

Stanford Seminar - Bridging model-based and data-driven reasoning for safe human-centered robotics

Jason Choi -- Introduction to Control Lyapunov Functions and Control Barrier Functions

Jason Choi -- Introduction to Control Lyapunov Functions and Control Barrier Functions

Applying Model Predictive Control

Applying Model Predictive Control

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

TOP Christmas Songs Playlist 2026 ❄️  Mariah Carey, Ariana Grande, Justin Bieber, Christmas Songs

TOP Christmas Songs Playlist 2026 ❄️ Mariah Carey, Ariana Grande, Justin Bieber, Christmas Songs

Stanford Seminar - Safety-Critical Control of Dynamic Robots

Stanford Seminar - Safety-Critical Control of Dynamic Robots

Stanford CS236: Deep Generative Models I 2023 I Lecture 11 - Energy Based Models

Stanford CS236: Deep Generative Models I 2023 I Lecture 11 - Energy Based Models

F1Tenth L12 - Model Predictive Control

F1Tenth L12 - Model Predictive Control

Stanford CS230 | Autumn 2025 | Lecture 9: Career Advice in AI

Stanford CS230 | Autumn 2025 | Lecture 9: Career Advice in AI

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

MIT Robotics - Zac Manchester - Composable Optimization for Robotic Motion Planning and Control

MIT Robotics - Zac Manchester - Composable Optimization for Robotic Motion Planning and Control

Stanford Seminar - ML Explainability Part 1 I Overview and Motivation for Explainability

Stanford Seminar - ML Explainability Part 1 I Overview and Motivation for Explainability

Mark Cannon - Adaptive Model Predictive Control: Robustness, Performance Enhancement & Param. Estim.

Mark Cannon - Adaptive Model Predictive Control: Robustness, Performance Enhancement & Param. Estim.

Aaron Ames:

Aaron Ames: "Safety-Critical Control of Autonomous Systems"

MPC and MHE implementation in Matlab using Casadi | Part 1

MPC and MHE implementation in Matlab using Casadi | Part 1

Stanford AA228/CS238 Decision Making Under Uncertainty I Online Planning and Policy Search

Stanford AA228/CS238 Decision Making Under Uncertainty I Online Planning and Policy Search

MPC from Basics to Learning-based Design (1/2)

MPC from Basics to Learning-based Design (1/2)

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

Stanford CS230 | Autumn 2025 | Lecture 1: Introduction to Deep Learning

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]