Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

BigPanda's Alexander Page On Building AI Agents That Internalize Corrections

Автор: Nexla

Загружено: 2025-12-23

Просмотров: 45

Описание:

Most AI agents still look great in demos and fall apart in production. Alexander Page, Engineering Director of Applied AI at BigPanda, shares how his team builds agents that internalize user corrections and improve without requiring source data fixes. Learn why evaluating tool call sequences beats tracking final outputs, and how to design multi-agent architectures that actually scale.

In this episode, Saket sits down with Alex to unpack production-grade AI agent design for IT operations. From handling outdated Confluence pages to breaking 100-tool systems into domain-specific agents, this conversation covers the practical realities of enterprise AI deployment.

Chapters:
00:00 Introduction
00:29 Alex's journey from sales engineering to Applied AI
01:29 Why ChatGPT sparked the move into AI for IT operations
02:38 What makes agents production-ready vs demo-ready
03:54 Building systems that learn and improve over time
04:52 Enterprise considerations and guardrails
05:49 Data access and honoring user permissions
06:24 Framework for deciding which use cases to pursue
07:40 Breaking complex problems into parts
09:01 Data quality challenges in RAG systems
11:25 Traceability and citing sources
12:24 Internalizing user corrections without fixing source data
13:45 Handling data gaps when nothing retrieves
15:20 Human in the loop for corrections
16:39 Prompting and context engineering techniques
17:57 Lost in the middle problem with large context windows
19:33 Why context engineering matters more than token limits
20:06 RAG as a component of agentic systems
23:25 AI tooling and developer productivity
25:20 6-10x productivity gains with Cursor
26:28 Learning model-specific strengths for different tasks
28:09 Evaluating agents by tool call sequences
29:56 Orchestrating multi-agent hierarchies
30:53 Prototype shelf for future foundation model capabilities
31:28 Defining agent responsibilities and tool isolation
34:17 MCP explained and its limitations
36:44 A2A protocol for agent-to-agent communication
37:11 MCP as snake oil when misused
39:40 Accessibility of AI development today
41:06 Advice for building applied AI skills

BigPanda's Alexander Page On Building AI Agents That Internalize Corrections

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Databricks' Robin Sutara On Why AI Training Fails - And The Persona-Based Enablement That Works

Databricks' Robin Sutara On Why AI Training Fails - And The Persona-Based Enablement That Works

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

Появляется новый тип искусственного интеллекта, и он лучше, чем LLMS?

How to Deploy Google AI Studio Websites & Web Apps on Hostinger (Step-by-Step)

How to Deploy Google AI Studio Websites & Web Apps on Hostinger (Step-by-Step)

The Energy Storage Problem No One Explained Properly

The Energy Storage Problem No One Explained Properly

AI Accelerates The World: 3 Predictions For 2026 (a16z Big Ideas)

AI Accelerates The World: 3 Predictions For 2026 (a16z Big Ideas)

The morale fix most IT leaders miss: Why listening beats solving when teams struggle | Trevor Gregg

The morale fix most IT leaders miss: Why listening beats solving when teams struggle | Trevor Gregg

Strategic Planning: From Vision to the Cross-offable Action

Strategic Planning: From Vision to the Cross-offable Action

Подробное объяснение моделей OSI и TCP/IP (уровни, протоколы) с подсказками.

Подробное объяснение моделей OSI и TCP/IP (уровни, протоколы) с подсказками.

Element Solutions’ Joe Albers on OT Patching Constraints That Break IT Security Models

Element Solutions’ Joe Albers on OT Patching Constraints That Break IT Security Models

the creator of Claude Code just revealed the truth

the creator of Claude Code just revealed the truth

Czy Chiny szykują się na upadek Rosji?

Czy Chiny szykują się na upadek Rosji?

«Озеленение», коммуникация и взаимодействие с заинтересованными сторонами в сфере целевых фондов ...

«Озеленение», коммуникация и взаимодействие с заинтересованными сторонами в сфере целевых фондов ...

How to beat hidden markets | Judd Kessler | I Wish They Knew #255

How to beat hidden markets | Judd Kessler | I Wish They Knew #255

Episode 24: Building Better Fundraising: Donor Psychology & Lifetime Value with Mike Duerksen

Episode 24: Building Better Fundraising: Donor Psychology & Lifetime Value with Mike Duerksen

How One Marketer Is Reframing B2B Storytelling with Tyler Dow

How One Marketer Is Reframing B2B Storytelling with Tyler Dow

Śnieżny paraliż na trasie S7. Kierowcy spędzili noc w autach

Śnieżny paraliż na trasie S7. Kierowcy spędzili noc w autach

Innovation Is Not What You Think! - Guest Matt Mueller

Innovation Is Not What You Think! - Guest Matt Mueller

Securing Millions of Lives Through Identity-First Strategy with Richard Henderson

Securing Millions of Lives Through Identity-First Strategy with Richard Henderson

Episode 4: Making cybersecurity events findable | The Job Security Podcast

Episode 4: Making cybersecurity events findable | The Job Security Podcast

Age Reversal or Just Hype - What Your TruAge Test Is Really Telling You #agingreversal

Age Reversal or Just Hype - What Your TruAge Test Is Really Telling You #agingreversal

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]