Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Автор: Simons Institute

Загружено: 2025-04-09

Просмотров: 2246

Описание:

Kaiyu Yang (Meta)
https://simons.berkeley.edu/talks/kai...
Simons Institute for the Theory of Computing and SLMath Joint Workshop: AI for Mathematics and Theoretical Computer Science

AI for Mathematics (AI4Math) is intellectually intriguing and crucial for AI-driven system design and verification. Much of the recent progress in this field has paralleled advances in natural language processing, especially by training large language models on curated mathematical text datasets. As a complementary yet less explored avenue, formal mathematical reasoning is grounded in formal systems such as Lean, which can verify the correctness of reasoning and provide automatic feedback. This talk introduces the basics of AI for formal mathematical reasoning, focusing on two central tasks: theorem proving (generating formal proofs given theorem statements) and autoformalization (translating from informal to formal). I will highlight the unique challenges of these tasks through two recent projects: one on proving inequality problems from mathematics olympiads, and another on autoformalizing Euclidean geometry problems.

Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

array(10) { [0]=> object(stdClass)#4711 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "iz_cAXByW_w" ["related_video_title"]=> string(45) "How can Machine Learning Help Mathematicians?" ["posted_time"]=> string(69) "Трансляция закончилась 2 месяца назад" ["channelName"]=> string(16) "Simons Institute" } [1]=> object(stdClass)#4684 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "4tn_V9NX2ls" ["related_video_title"]=> string(52) "Computational Complexity of Matching in Ride Sharing" ["posted_time"]=> string(19) "5 лет назад" ["channelName"]=> string(16) "Simons Institute" } [2]=> object(stdClass)#4709 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "aHYPa_PDAWA" ["related_video_title"]=> string(55) "What Can Theory Of Cryptography Tell Us About AI Safety" ["posted_time"]=> string(69) "Трансляция закончилась 2 месяца назад" ["channelName"]=> string(16) "Simons Institute" } [3]=> object(stdClass)#4716 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "5MWT_doo68k" ["related_video_title"]=> string(96) "OpenAI’s Sam Altman Talks ChatGPT, AI Agents and Superintelligence — Live at TED2025" ["posted_time"]=> string(69) "Трансляция закончилась 2 месяца назад" ["channelName"]=> string(3) "TED" } [4]=> object(stdClass)#4695 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "_cr46G2K5Fo" ["related_video_title"]=> string(64) "The Man Who Almost Broke Math (And Himself...) - Axiom of Choice" ["posted_time"]=> string(25) "2 месяца назад" ["channelName"]=> string(10) "Veritasium" } [5]=> object(stdClass)#4713 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "ETZfkkv6V7Y" ["related_video_title"]=> string(64) "Yann LeCun "Mathematical Obstacles on the Way to Human-Level AI"" ["posted_time"]=> string(25) "2 месяца назад" ["channelName"]=> string(26) "Joint Mathematics Meetings" } [6]=> object(stdClass)#4708 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "fkIvmfqX-t0" ["related_video_title"]=> string(71) "Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED" ["posted_time"]=> string(19) "1 год назад" ["channelName"]=> string(5) "WIRED" } [7]=> object(stdClass)#4718 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "95Mkwbsk2HQ" ["related_video_title"]=> string(79) "Можно ли поменять родину так быстро? / вДудь" ["posted_time"]=> string(21) "1 день назад" ["channelName"]=> string(10) "вДудь" } [8]=> object(stdClass)#4694 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "GVsUOuSjvcg" ["related_video_title"]=> string(63) "Future Computers Will Be Radically Different (Analog Computing)" ["posted_time"]=> string(21) "3 года назад" ["channelName"]=> string(10) "Veritasium" } [9]=> object(stdClass)#4712 (5) { ["video_id"]=> int(9999999) ["related_video_id"]=> string(11) "7j_NE6Pjv-E" ["related_video_title"]=> string(64) "Model Context Protocol (MCP), clearly explained (why it matters)" ["posted_time"]=> string(25) "3 месяца назад" ["channelName"]=> string(13) "Greg Isenberg" } }
How can Machine Learning Help Mathematicians?

How can Machine Learning Help Mathematicians?

Computational Complexity of Matching in Ride Sharing

Computational Complexity of Matching in Ride Sharing

What Can Theory Of Cryptography Tell Us About AI Safety

What Can Theory Of Cryptography Tell Us About AI Safety

OpenAI’s Sam Altman Talks ChatGPT, AI Agents and Superintelligence — Live at TED2025

OpenAI’s Sam Altman Talks ChatGPT, AI Agents and Superintelligence — Live at TED2025

The Man Who Almost Broke Math (And Himself...) - Axiom of Choice

The Man Who Almost Broke Math (And Himself...) - Axiom of Choice

Yann LeCun

Yann LeCun "Mathematical Obstacles on the Way to Human-Level AI"

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Harvard Professor Explains Algorithms in 5 Levels of Difficulty | WIRED

Можно ли поменять родину так быстро? / вДудь

Можно ли поменять родину так быстро? / вДудь

Future Computers Will Be Radically Different (Analog Computing)

Future Computers Will Be Radically Different (Analog Computing)

Model Context Protocol (MCP), clearly explained (why it matters)

Model Context Protocol (MCP), clearly explained (why it matters)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]