Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Автор: Simons Institute for the Theory of Computing

Загружено: 2025-04-09

Просмотров: 3192

Описание:

Kaiyu Yang (Meta)
https://simons.berkeley.edu/talks/kai...
Simons Institute for the Theory of Computing and SLMath Joint Workshop: AI for Mathematics and Theoretical Computer Science

AI for Mathematics (AI4Math) is intellectually intriguing and crucial for AI-driven system design and verification. Much of the recent progress in this field has paralleled advances in natural language processing, especially by training large language models on curated mathematical text datasets. As a complementary yet less explored avenue, formal mathematical reasoning is grounded in formal systems such as Lean, which can verify the correctness of reasoning and provide automatic feedback. This talk introduces the basics of AI for formal mathematical reasoning, focusing on two central tasks: theorem proving (generating formal proofs given theorem statements) and autoformalization (translating from informal to formal). I will highlight the unique challenges of these tasks through two recent projects: one on proving inequality problems from mathematics olympiads, and another on autoformalizing Euclidean geometry problems.

Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Strong Generalization from Small Brains and No Training Data

Strong Generalization from Small Brains and No Training Data

Kevin Buzzard - Where is Mathematics Going? (September 24, 2025)

Kevin Buzzard - Where is Mathematics Going? (September 24, 2025)

How can Machine Learning Help Mathematicians?

How can Machine Learning Help Mathematicians?

A Taxonomy for Next-gen Reasoning — Nathan Lambert, Allen Institute (AI2) & Interconnects.ai

A Taxonomy for Next-gen Reasoning — Nathan Lambert, Allen Institute (AI2) & Interconnects.ai

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Automating scientific discovery and hypothesis generation with language model agents

Automating scientific discovery and hypothesis generation with language model agents

Когда компьютеры пишут доказательства, какой смысл в математиках?

Когда компьютеры пишут доказательства, какой смысл в математиках?

Learning from Dynamics

Learning from Dynamics

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Теренс Тао: Сложнейшие задачи математики, физики и будущее ИИ | Лекс Фридман Подкаст #472

Terence Tao - Machine-Assisted Proofs (February 19, 2025)

Terence Tao - Machine-Assisted Proofs (February 19, 2025)

Load Balancing with Duration Predictions

Load Balancing with Duration Predictions

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

Visualizing transformers and attention | Talk for TNG Big Tech Day '24

The Potential for AI in Science and Mathematics - Terence Tao

The Potential for AI in Science and Mathematics - Terence Tao

What Can Theory Of Cryptography Tell Us About AI Safety

What Can Theory Of Cryptography Tell Us About AI Safety

Kaiyu Yang - Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Kaiyu Yang - Formal Reasoning Meets LLMs: Toward AI for Mathematics and Verification

Тимоти Гауэрс — Почему обладатели степени магистра права не способны находить доказательства?

Тимоти Гауэрс — Почему обладатели степени магистра права не способны находить доказательства?

Automatic Parallelism Management

Automatic Parallelism Management

Math Encounters:

Math Encounters: "You Want Proof? I'll Give You Proof! ...Euclid to Lean" Jeremy Avigad Nov 6 2024

The elusive generalization: classical bounds to double descent to grokking

The elusive generalization: classical bounds to double descent to grokking

Automated Reasoning to Prevent LLM Hallucination with Byron Cook - 712

Automated Reasoning to Prevent LLM Hallucination with Byron Cook - 712

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]