Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

A Taxonomy for Next-gen Reasoning — Nathan Lambert, Allen Institute (AI2) & Interconnects.ai

Автор: AI Engineer

Загружено: 2025-07-19

Просмотров: 14779

Описание:

Current AI models are extremely skilled, which was seen as the step change in evaluation scores across the industry in the first half of 2025, but often fail when presented with even medium time-horizon tasks. This talk presents a taxonomy of 4 traits of reasoning models -- skills, calibration, strategy, and abstraction -- that will be crucial to creating the next generation of AI applications. With this, we focus on the latter two, strategy and abstraction, and discuss how these traits will enable long-horizon and reliable agents. The talk concludes with a scenario where these agentic behaviors are the foundation for RL continuing to scale in the coming years and post-training techniques reaching compute parity with pretraining methors sooner than later.

About Nathan Lambert
Nathan Lambert is a Senior Research Scientist and post-training lead at the Allen Institute for AI focusing on building open language models. At the same time he founded and operates Interconnects.ai to increase transparency and understanding of current AI models and systems.

Previously, he helped build an RLHF research team at HuggingFace. He received his PhD from the University of California, Berkeley working at the intersection of machine learning and robotics. He was advised by Professor Kristofer Pister in the Berkeley Autonomous Microsystems Lab and Roberto Calandra at Meta AI Research. He was lucky to intern at Facebook AI and DeepMind during his Ph.D. Nathan was was awarded the UC Berkeley EECS Demetri Angelakos Memorial Achievement Award for Altruism for his efforts to better community norms.

Recorded at the AI Engineer World's Fair in San Francisco. Stay up to date on our upcoming events and content by joining our newsletter here: https://www.ai.engineer/newsletter

Timestamps:

[00:00] The Current State of Reasoning in AI Models

[01:06] Unlocking New Language Model Applications

[03:48] The Need for Advanced Planning in AI

[04:29] A Proposed Taxonomy for Next-Generation Reasoning

[06:16] Reinforcement Learning with Verifiable Rewards

[08:23] Current Challenges and Future Directions

[12:07] The Effort Required to Build New Capabilities

[16:20] A Research Plan for Training Reasoning Models

[17:36] The Shift in Compute Allocation from Pre-training to Post-training

A Taxonomy for Next-gen Reasoning — Nathan Lambert, Allen Institute (AI2) & Interconnects.ai

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

[Full Workshop] Reinforcement Learning, Kernels, Reasoning, Quantization & Agents — Daniel Han

[Full Workshop] Reinforcement Learning, Kernels, Reasoning, Quantization & Agents — Daniel Han

Как мы создаем эффективных агентов: Барри Чжан, Anthropic

Как мы создаем эффективных агентов: Барри Чжан, Anthropic

The RLVR Revolution — with Nathan Lambert (AI2, Interconnects.ai)

The RLVR Revolution — with Nathan Lambert (AI2, Interconnects.ai)

Building and evaluating AI Agents — Sayash Kapoor, AI Snake Oil

Building and evaluating AI Agents — Sayash Kapoor, AI Snake Oil

Training Agentic Reasoners — Will Brown, Prime Intellect

Training Agentic Reasoners — Will Brown, Prime Intellect

But how do AI images and videos actually work? | Guest video by Welch Labs

But how do AI images and videos actually work? | Guest video by Welch Labs

Andrej Karpathy: Software Is Changing (Again)

Andrej Karpathy: Software Is Changing (Again)

Никаких вибраций: решение сложных проблем в сложных кодовых базах – Декс Хорти, HumanLayer

Никаких вибраций: решение сложных проблем в сложных кодовых базах – Декс Хорти, HumanLayer

Обучение с подкреплением для агентов — Уилл Браун, исследователь машинного обучения в Morgan Stanley

Обучение с подкреплением для агентов — Уилл Браун, исследователь машинного обучения в Morgan Stanley

Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote

Andrew Ng Explores The Rise Of AI Agents And Agentic Reasoning | BUILD 2024 Keynote

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

RAG vs Fine-Tuning vs Prompt Engineering: Optimizing AI Models

Scaling and the Road to Human-Level AI | Anthropic Co-founder Jared Kaplan

Scaling and the Road to Human-Level AI | Anthropic Co-founder Jared Kaplan

Everything You Wanted to Know About LLM Post-Training, with Nathan Lambert of Allen Institute for AI

Everything You Wanted to Know About LLM Post-Training, with Nathan Lambert of Allen Institute for AI

François Chollet: How We Get To AGI

François Chollet: How We Get To AGI

Масштабные среды RL – Уилл Браун, Prime Intellect

Масштабные среды RL – Уилл Браун, Prime Intellect

Stanford CS25: V4 I Aligning Open Language Models

Stanford CS25: V4 I Aligning Open Language Models

Агенты ИИ + LLM Reasoning: трансформация автономных рабочих процессов

Агенты ИИ + LLM Reasoning: трансформация автономных рабочих процессов

Why Ai2? | Nathan Lambert & Kyle Wiggers

Why Ai2? | Nathan Lambert & Kyle Wiggers

The mind behind Linux | Linus Torvalds | TED

The mind behind Linux | Linus Torvalds | TED

Как считает квантовый компьютер? Самое простое объяснение!

Как считает квантовый компьютер? Самое простое объяснение!

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]