Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Time series l Statistics Paper 3 l Part 1 l ISS 2026

Автор: statup academy

Загружено: 2025-11-11

Просмотров: 53

Описание:

Welcome back to our channel! In this video we begin Part 1 of our deep-dive into the Time Series topic as per the Union Public Service Commission (UPSC) Indian Statistical Service (ISS) Statistics Paper 3 syllabus for the 2026 cycle.


---

🎯 What you’ll get in this video

Introduction to Time Series Analysis: definition, components (trend, seasonal, cyclical, irregular)

How discrete-parameter stochastic processes relate to time series.

Methods of smoothing: moving averages, exponential smoothing.

Exploratory techniques: testing for trend & seasonality.

Setting up the groundwork for forecasting models (to be covered more in subsequent parts).



---

📌 Why this is important for ISS Paper 3

The ISS syllabus lists Time Series Analysis under “Applied Statistics” topics: including components of economic time-series, trend, seasonal fluctuations, stationarity, AR, MA, ARMA, ARIMA models.

In Paper 3, questions often focus on both theory & methods (e.g., how to determine trend/seasonality, how to move from smoothing to model building).

Mastery of these basics will make the advanced material (Box–Jenkins ARIMA etc.) much easier to crack.



---

🧠 How to use this video in your preparation

Pause & practice: Whenever I explain a method, take a moment to jot down the formula and work a simple numeric example.

Link to previous years’ papers: Past ISS Paper 3 questions often include parts on smoothing/trend & seasonal indices. Utilize the resources.

Revisit after Part 1: This video sets the foundation—after watching, revisit once we finish all parts to reinforce connections between methods.



---

✅ Next Steps

Part 2 of “Time Series” will cover: stationary processes, properties of autocovariance & autocorrelation functions, model identification for AR, MA, ARMA.

Don’t forget to download the notes and PDF that accompany this session (link in the description/comment section).

Subscribe & hit the bell icon so you don’t miss Parts 2, 3, … of the series.



---

📚 Recommended Reading / Resources

ISS Syllabus overview for Statistics Paper 3.

Previous years’ ISS Paper 3 practice questions (look up smoothing/trend/seasonality).

Online lectures and notes on time series smoothing and forecasting basics.

Time series l Statistics Paper 3 l Part 1 l ISS 2026

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Time Series l Part 2 l Statistics Paper 3 l ISS 2026

Time Series l Part 2 l Statistics Paper 3 l ISS 2026

ACSESS 2025 – Student Blitz

ACSESS 2025 – Student Blitz

NA ŻYWO: Ukraińskie żądania terytorialne wobec Polski?

NA ŻYWO: Ukraińskie żądania terytorialne wobec Polski?

Basics of ARMA and ARIMA Modeling #arima #arma #boxjenkins #financialeconometrics #timeseries

Basics of ARMA and ARIMA Modeling #arima #arma #boxjenkins #financialeconometrics #timeseries

Seasonal Indices for Time Series: 4 Methods for Business Managers

Seasonal Indices for Time Series: 4 Methods for Business Managers

Idioms & Phrases l English Paper 1 l Part 65 l ISS/IES 2026

Idioms & Phrases l English Paper 1 l Part 65 l ISS/IES 2026

Forecasting 2 l Time Series l Statistics Paper 3 l Part 23 l ISS 2026

Forecasting 2 l Time Series l Statistics Paper 3 l Part 23 l ISS 2026

Auto - Regressive l Time Series l Statistics Paper 3 l Part 17 l ISS 2026

Auto - Regressive l Time Series l Statistics Paper 3 l Part 17 l ISS 2026

8. Time Series Analysis I

8. Time Series Analysis I

Time Series Forecasting in Python – Tutorial for Beginners

Time Series Forecasting in Python – Tutorial for Beginners

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Time Series - Seasonal Variation

Time Series - Seasonal Variation

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Преломление и «замедление» света | По мотивам лекции Ричарда Фейнмана

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Обсуждение временных рядов: модель ARIMA

Обсуждение временных рядов: модель ARIMA

Index No. l Statistics Paper 3 l Part 1 l ISS 2026

Index No. l Statistics Paper 3 l Part 1 l ISS 2026

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Выучите R за 39 минут

Выучите R за 39 минут

Idioms & Phrases l English Paper 1 l Part 64 l ISS/IES 2026

Idioms & Phrases l English Paper 1 l Part 64 l ISS/IES 2026

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]