K-means clustering: how it works
Автор: Victor Lavrenko
Загружено: 2014-01-19
Просмотров: 874774
Full lecture: http://bit.ly/K-means
The K-means algorithm starts by placing K points (centroids) at random locations in space. We then perform the following steps iteratively: (1) for each instance, we assign it to a cluster with the nearest centroid, and (2) we move each centroid to the mean of the instances assigned to it. The algorithm continues until no instances change cluster membership.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: