Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Kevin Klein - Causal Inference Libraries: What They Do, What I'd Like Them To Do | PD Amsterdam 2023

Автор: PyData

Загружено: 2023-11-22

Просмотров: 3593

Описание:

This talk will explore the Python tooling and ecosystem for estimating conditional average treatment effects (CATEs) in a Causal Inference setting. Using real world-examples, it will compare and contrast the pros and cons of various existing libraries as well as outline desirable functionalities not currently offered by any public library.

Conditional average treatment effects (CATEs) are a fundamental concept in Causal Inference, allowing for the estimation of the effect of a particular treatment or intervention. For CATEs, the effect estimation is not only with respect to an entire population, e.g. all experiment participants, but rather with respect to units, e.g. a single experiment participant, with individual characteristics. This can be very important to meaningfully personalize services and products. In this talk, we will explore the Python tooling and ecosystem for estimating CATEs, including libraries such as EconML and CausalML.

We will begin by providing an overview of the theory behind CATE estimation, how it fits into the broader field of causal inference and how Machine Learning has recently broken into CATE estimation. We will then dive into the various libraries available for Python, discussing their strengths and weaknesses and providing real-world examples of their usage.

Specifically, we will cover:
EconML: An open-source library for general Causal Inference purposes, by Microsoft Research
CausalML: An open-source library for uplift modeling in particular, by Uber

We will compare and contrast these libraries with respect to CATE estimation, discussing which methods they use, which assumptions they make, and which types of data they are best suited for. We will also provide code examples to illustrate how to use each library in practice. Moreover, we will discuss what we think is missing from both of them.

By the end of the talk, attendees will have a solid understanding of the Python tooling and ecosystem for estimating CATEs in a causal inference setting. They will know which libraries to use for different types of data and which methods are most appropriate for different scenarios.

This talk could be particularly relevant for Data Scientists wishing to analyze experiments, such as A/B tests, or trying to derive causal statements from observational, non-experimental data. Participants are not expected to have Causal Inference expertise. Yet, a fundamental understanding of Machine Learning and Probability Theory will be beneficial.

0-5’: Why Causal Inference and why CATE estimation?
5-10’: What are some conceptual ways of estimating CATEs?
10-20’: How can we use EconML and CausalML for CATE estimation on a real dataset?
20-30’: What are we missing from EconML and CausalML?

Bio:
Kevin Klein
Kevin is a Data Scientist at QuantCo, working on fraud detection, risk modelling and experimentation. Prior to joining QuantCo, he focused on Natural Language Processing, discrete optimization and Bayesian optimization during his Computer Science major at ETH, Zurich.
He's not very original in that he likes functional programming, running and writing.

===

www.pydata.org

PyData is an educational program of NumFOCUS, a 501(c)3 non-profit organization in the United States. PyData provides a forum for the international community of users and developers of data analysis tools to share ideas and learn from each other. The global PyData network promotes discussion of best practices, new approaches, and emerging technologies for data management, processing, analytics, and visualization. PyData communities approach data science using many languages, including (but not limited to) Python, Julia, and R.

PyData conferences aim to be accessible and community-driven, with novice to advanced level presentations. PyData tutorials and talks bring attendees the latest project features along with cutting-edge use cases.

00:00 Welcome!
00:10 Help us add time stamps or captions to this video! See the description for details.

Want to help add timestamps to our YouTube videos to help with discoverability? Find out more here: https://github.com/numfocus/YouTubeVi...

Kevin Klein - Causal Inference Libraries: What They Do, What I'd Like Them To Do | PD Amsterdam 2023

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Staggered Difference-in-Differences in Practice: Causal Insights from the Music Industry | PDAMS 23

Staggered Difference-in-Differences in Practice: Causal Insights from the Music Industry | PDAMS 23

What is causal inference, and why should data scientists know? by Ludvig Hult

What is causal inference, and why should data scientists know? by Ludvig Hult

Vincent Warmerdam - Keynote

Vincent Warmerdam - Keynote "Natural Intelligence is All You Need [tm]"

Aleksander Molak - A Practical Guide to Causality in Python (For The Perplexed) | PyData NYC 2023

Aleksander Molak - A Practical Guide to Causality in Python (For The Perplexed) | PyData NYC 2023

Причинно-следственная связь - ОБЪЯСНЕНА!

Причинно-следственная связь - ОБЪЯСНЕНА!

Jakob Runge: Causal Inference on Time Series Data with the Tigramite Package

Jakob Runge: Causal Inference on Time Series Data with the Tigramite Package

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Bayesian Causal inference: why you should be excited

Bayesian Causal inference: why you should be excited

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Причинно-следственные выводы с помощью машинного обучения — ОБЪЯСНЕНЫ!

Demo: Enabling end-to-end causal inference at scale

Demo: Enabling end-to-end causal inference at scale

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Okke van der Wal - Personalization at Uber scale via causal-driven machine learning | PDAMS 2023

Okke van der Wal - Personalization at Uber scale via causal-driven machine learning | PDAMS 2023

Conditional Average Treatment Effects: Causal Inference Bootcamp

Conditional Average Treatment Effects: Causal Inference Bootcamp

PyData Amsterdam 2023 - Opening Notes

PyData Amsterdam 2023 - Opening Notes

🧑‍💻 Собеседования и найм: алгоритмы, высокие нагрузки, использование LLM, IDE, стресс и лайвкодинг

🧑‍💻 Собеседования и найм: алгоритмы, высокие нагрузки, использование LLM, IDE, стресс и лайвкодинг

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

Превратите ЛЮБОЙ файл в знания LLM за СЕКУНДЫ

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]