Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Jorge Nocedal: "Tutorial on Optimization Methods for Machine Learning, Pt. 1"

Автор: Institute for Pure & Applied Mathematics (IPAM)

Загружено: 2015-08-26

Просмотров: 5184

Описание:

Graduate Summer School 2012: Deep Learning, Feature Learning

"Tutorial on Optimization Methods for Machine Learning, Pt. 1"
Jorge Nocedal, Northwestern University

Institute for Pure and Applied Mathematics, UCLA
July 19, 2012

For more information: https://www.ipam.ucla.edu/programs/su...

Jorge Nocedal: "Tutorial on Optimization Methods for Machine Learning, Pt. 1"

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Jorge Nocedal:

Jorge Nocedal: "Tutorial on Optimization Methods for Machine Learning, Pt. 2"

8.2 Quasi Newton and BFGS

8.2 Quasi Newton and BFGS

JORGE NOCEDAL | Optimization methods for TRAINING DEEP NEURAL NETWORKS

JORGE NOCEDAL | Optimization methods for TRAINING DEEP NEURAL NETWORKS

Distributed Optimization via Alternating Direction Method of Multipliers

Distributed Optimization via Alternating Direction Method of Multipliers

Optimization Methods for Machine Learning and Engineering (KIT Winter Term 20/21)

Optimization Methods for Machine Learning and Engineering (KIT Winter Term 20/21)

22. Gradient Descent: Downhill to a Minimum

22. Gradient Descent: Downhill to a Minimum

Stanford Seminar - Information Theory of Deep Learning, Naftali Tishby

Stanford Seminar - Information Theory of Deep Learning, Naftali Tishby

MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018

MIT 18.065 Matrix Methods in Data Analysis, Signal Processing, and Machine Learning, Spring 2018

ICML 2017 Tutorial: Recent Advances in Stochastic Convex and Non-Convex Optimization (audio fixed)

ICML 2017 Tutorial: Recent Advances in Stochastic Convex and Non-Convex Optimization (audio fixed)

Five Miracles of Mirror Descent, Lecture 1/9

Five Miracles of Mirror Descent, Lecture 1/9

Machine Learning Summer School 2013 Tübingen

Machine Learning Summer School 2013 Tübingen

CS885 Lecture 15a: Trust Region Policy Optimization (Presenter: Shivam Kalra)

CS885 Lecture 15a: Trust Region Policy Optimization (Presenter: Shivam Kalra)

11. Unconstrained Optimization; Newton-Raphson and Trust Region Methods

11. Unconstrained Optimization; Newton-Raphson and Trust Region Methods

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Optimization I

Optimization I

Graphical Models 1 - Christopher Bishop - MLSS 2013 Tübingen

Graphical Models 1 - Christopher Bishop - MLSS 2013 Tübingen

Bandits, Active Learning, Bayesian RL and Global Optimization - Marc Toussaint - MLSS 2013 Tübingen

Bandits, Active Learning, Bayesian RL and Global Optimization - Marc Toussaint - MLSS 2013 Tübingen

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 1

Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 1

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

🧪🧪🧪🧪Как увидеть гиперпространство (4-е измерение)

Machine learning - Unconstrained optimization

Machine learning - Unconstrained optimization

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com