Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Kuhn Tucker Optimality Conditions with inequality constraints.

Автор: ECON MATHS

Загружено: 2021-10-16

Просмотров: 51221

Описание:

the Karush–Kuhn–Tucker (KKT) conditions, also known as the Kuhn–Tucker conditions, are first derivative tests (sometimes called first-order necessary conditions) for a solution in nonlinear programming to be optimal, provided that some regularity conditions are satisfied.

Allowing inequality constraints, the KKT approach to nonlinear programming generalizes the method of Lagrange multipliers, which allows only equality constraints. Similar to the Lagrange approach, the constrained maximization (minimization) problem is rewritten as a Lagrange function whose optimal point is a saddle point, i.e. a global maximum (minimum) over the domain of the choice variables and a global minimum (maximum) over the multipliers, which is why the Karush–Kuhn–Tucker theorem is sometimes referred to as the saddle-point theorem.
Consider the case of a two-good world where both goods, x and y. are rationed. Let the consumer’s utility function be U = U(x,y). The consumer has a fixed money budget of B and faces the money prices Px and Py. Further, the consumer has an allotment of coupons, denoted C, which can be used to purchase both x or y at a coupon price of cx and cy. Therefore the consumer’s maximization problem is Maximize U =U(x,y) Subject to and B ≥Pxx+Pyy C ≥cxx+cyy in addition, the non-negativity constraint x ≥ 0 and y ≥ 0. The Lagrangian for the problem is Z =U(x,y)+λ(B−Pxx−Pyy)+λ2(C −cxx+cyy) where λ,λ2 are the Lagrange multiplier on the budget and coupon constraints respectively. The Kuhn-Tucker conditions are Zx =Ux−λ1Px−λ2cx =0 Zy =Uy −λ1Py −λ2cy =0 Zλ1 = B−Pxx−Pyy ≥0 λ1≥0 Zλ2 = C −cxx−cyy ≥0 λ2≥0 Numerical Example Let’s suppose the utility function is of the form U = x · y2. Further, let B =100,Px = Py =1while C =120and cx =2,cy =1. The Lagrangian becomes Z =xy2+λ1(100−x−y)+λ2(120−2x−y) The Kuhn-Tucker conditions are now Zx =y2 −λ1−2λ2 ≤0 x≥0 x·Zx=0 Zy =2xy−λ1−λ2 ≤0 y ≥0 y·Zy =0 Zλ1 =100−x−y ≥0 λ1 ≥0 λ1·Zλ1 =0 Zλ2 =120−2x−y ≥0 λ2 ≥0 λ2·Zλ2 =0

Kuhn Tucker Optimality Conditions with inequality constraints.

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

The Karush–Kuhn–Tucker (KKT)  Conditions and the Interior Point Method for Convex Optimization

The Karush–Kuhn–Tucker (KKT) Conditions and the Interior Point Method for Convex Optimization

Задача 1 (NLPP с 2 переменными и 2 ограничениями-неравенствами)

Задача 1 (NLPP с 2 переменными и 2 ограничениями-неравенствами)

Manzil RIMC June 2026 | Quadratic Equation Complete Concept | Maths | By Nitin Sir

Manzil RIMC June 2026 | Quadratic Equation Complete Concept | Maths | By Nitin Sir

Cost minimisation and output maximisation from Cobb-douglas production function #OPTIMISATION #

Cost minimisation and output maximisation from Cobb-douglas production function #OPTIMISATION #

Lecture 40(A): Kuhn-Tucker Conditions: Conceptual and geometric insight

Lecture 40(A): Kuhn-Tucker Conditions: Conceptual and geometric insight

Karush-Kuhn-Tucker (KKT) conditions: motivation and theorem

Karush-Kuhn-Tucker (KKT) conditions: motivation and theorem

Лекция 40(Б): Условия и теорема Куна-Таккера

Лекция 40(Б): Условия и теорема Куна-Таккера

cobb Douglas production function and degree of homogenity of marginal product of capital and labour

cobb Douglas production function and degree of homogenity of marginal product of capital and labour

Множители Лагранжа | Геометрический смысл и полный пример

Множители Лагранжа | Геометрический смысл и полный пример

BORDERED HESSIAN METHOD For Constrained Optimisation Numerical. #Hessian #optimisation

BORDERED HESSIAN METHOD For Constrained Optimisation Numerical. #Hessian #optimisation

Examples for optimization subject to inequality constraints, Kuhn-Tucker

Examples for optimization subject to inequality constraints, Kuhn-Tucker

L1.6 –⁠ Inequality-constrained optimization: KKT conditions as first-order conditions of optimality

L1.6 –⁠ Inequality-constrained optimization: KKT conditions as first-order conditions of optimality

KKT optimality conditions

KKT optimality conditions

Непрерывность vs Равномерная непрерывность

Непрерывность vs Равномерная непрерывность

Функция косвенной полезности, тождество Роя, лемма Шепарда, маршаллианская и хиксовская функция с...

Функция косвенной полезности, тождество Роя, лемма Шепарда, маршаллианская и хиксовская функция с...

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

How to Derive marshallian and hicksian demand function #marshallian_Demand  
#Hicksian_demand

How to Derive marshallian and hicksian demand function #marshallian_Demand #Hicksian_demand

Kuhn Tucker (NLPP with 2 Variables and 1 Inequality Constraints) Problem 1

Kuhn Tucker (NLPP with 2 Variables and 1 Inequality Constraints) Problem 1

Выпуклость и принцип двойственности

Выпуклость и принцип двойственности

How to solve a basic Kuhn Tucker problem with 2 constraints (using the Lagrange Multiplier Method)

How to solve a basic Kuhn Tucker problem with 2 constraints (using the Lagrange Multiplier Method)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]