Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Quadratic (or Nonlinear) 9-node isoparametric quadrilateral element in Finite element analysis (FEA)

Автор: Michael Sevier

Загружено: 2024-07-25

Просмотров: 1441

Описание:

Previously, 4-node linear isoparametric elements have been covered in the following videos:
   • FEA Isoparametric Quadrilaterals Part 1: J...  
   • FEA Isoparametric Quadrilaterals Part 2: T...  
   • FEA Isoparametric Quadrilaterals Part 3: G...  
   • FEA Isoparametric Quadrilaterals Part 4: E...  
While this is a big step up from the 3-node constant strain triangle (CST) element (   • Stiffness matrix for constant strain trian...  ), there are still some limitations - especially with bending. This video explores how the addition of mid-side nodes can provide higher order shape functions which address these limitations. This video covers the nine-node version of a 2D isoparametric quadrilateral element which includes a center node in addition to the mid-side nodes. Note that there is also an eight-node version that is commonly used which does not include the center node.

0:00 Introduction
0:39 Limitations of the 4-node linear isoparametric element
1:36 Definition of "shear locking"
2:58 How quadratic elements address limitations linear isoparametric elements
4:06 Shape functions for the 9-node quadratic isoparametric element
8:17 Position functions and Jacobian matrix for 9-node quadratic isoparametric element
10:10 Stiffness matrix equation for 9-node quadratic isoparametric element
11:28 Displacement functions and the strain-displacement matrix [B] for 9-node quadratic isoparametric element
13:26 Gauss integration for 9-node quadratic isoparametric element
17:34 Reflection questions

Suggested answers to reflection questions
1.) Quadratic (also called "Nonlinear") elements are especially useful in bending because they counter the "shear locking" effect present in linear elements. They also can map to curved edges such as fillets easier.
2.) More Gauss integration points (or sampling points) are required to evaluate the stiffness matrix for the 9-node quadratic isoparametric element because the shape functions are now quadratic instead of linear (as for the 4-node isoparametric element). This means that the polynomials within the integrand of the stiffness matrix have a higher order and thus require more Gauss integration points. According to Gauss quadrature, four Gauss integration points should be used in each direction but FEA typically uses three in each direction.
3.) The increased computational cost comes in two forms:
First the setup time increases because the stiffness matrix is now 18x18 instead of 8x8. Also, there are now 9 Gauss integration points instead of 4. This means that each element would require 2916 separate computations instead of 256 (not to mention that each computation is more involved).
Second, the number of total degrees of freedom in the model, n, would increase by ~9/4. Since solving {q} = inv([K])*{F} is roughly proportional to n^2, the solve process would roughly increase by a factor of 5. Since most of the solve time typically corresponds to solving {q} = inv([K])*{F}, this would have the most drastic effect on solution time.

Quadratic (or Nonlinear) 9-node isoparametric quadrilateral element in Finite element analysis (FEA)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

FEA Isoparametric Quadrilaterals Part 4: Evaluating Stress Results

FEA Isoparametric Quadrilaterals Part 4: Evaluating Stress Results

FEA Isoparametric Quadrilaterals Part 1: Jacobian matrix and natural coordinates

FEA Isoparametric Quadrilaterals Part 1: Jacobian matrix and natural coordinates

Introduction to shell elements in Finite Element Analysis (FEA)

Introduction to shell elements in Finite Element Analysis (FEA)

Intro to the Finite Element Method | Lectures

Intro to the Finite Element Method | Lectures

Finite Element Method | Theory

Finite Element Method | Theory

2D Finite Element Formulation Part I

2D Finite Element Formulation Part I

Метод конечных элементов | Теория | Четырехугольные (прямоугольные) элементы

Метод конечных элементов | Теория | Четырехугольные (прямоугольные) элементы

Функция формы - анализ методом конечных элементов №2

Функция формы - анализ методом конечных элементов №2

Откуда возникает тригонометрия

Откуда возникает тригонометрия

Bilinear Quad Element - Shape Functions

Bilinear Quad Element - Shape Functions

Intro to the Finite Element Method Lecture 6 | Isoparametric Elements and Gaussian Integration

Intro to the Finite Element Method Lecture 6 | Isoparametric Elements and Gaussian Integration

Stiffness matrix for constant strain triangle (CST) element in Finite Element Analysis (FEA)

Stiffness matrix for constant strain triangle (CST) element in Finite Element Analysis (FEA)

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Finite Element Method | Theory | Isoparametric Elements

Finite Element Method | Theory | Isoparametric Elements

The Mathematician's Weapon | An Intro to Category Theory, Abstraction and Algebra

The Mathematician's Weapon | An Intro to Category Theory, Abstraction and Algebra

Необычная задача с ОЛИМПИАДЫ!

Необычная задача с ОЛИМПИАДЫ!

Румынская математическая олимпиада

Румынская математическая олимпиада

Как повернуть любой график на любой угол

Как повернуть любой график на любой угол

8 Nodded | Quadrilateral element | Shape function | Derivation | Serendipity | FEA | L-11

8 Nodded | Quadrilateral element | Shape function | Derivation | Serendipity | FEA | L-11

Введение в МКЭ - Неделя 02-11 Матрица общей жёсткости фермы 01

Введение в МКЭ - Неделя 02-11 Матрица общей жёсткости фермы 01

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com