Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

FEA Isoparametric Quadrilaterals Part 1: Jacobian matrix and natural coordinates

Автор: Michael Sevier

Загружено: 2024-07-25

Просмотров: 2053

Описание:

This video shows the first steps in how to develop the stiffness matrix for linear 4-node isoparametric quadrilateral elements in finite element analysis (FEA). The form of the stiffness matrix is very similar to that for constant strain triangles. There are a couple big differences however. First, the shape functions are based on fractional distances throughout the element instead of global x, y locations. These fractional measurements from the center to any edge are called "natural coordinates." The Jacobian matrix is used to map between natural coordinates and global coordinates. The second big difference is that quadrilateral elements have a shear flexibility term which allows for stresses and strains to vary throughout the element. However, this also means that the integrand of the stiffness matrix equation is not constant and thus integration is required.

0:00 Introduction and basic concepts for the linear isoparametric quadrilateral element
2:01 Description of shear flexibility term and why strain and stress can vary in the element as a result
4:05 Description of natural coordinates and their purpose
6:10 Description of Jacobian matrix and its purpose
7:38 Description of shape functions
9:43 Use shape functions to evaluate Jacobian matrix in terms of natural coordinates and nodal x, y positions
12:02 The Jacobian ratio - How the Jacobian matrix is used to determine element quality
13:44 Reflection questions

Suggested answers to reflection questions
1.) Stress and strain can vary linearly within 4-node quadrilateral elements and cannot vary in 3-node constant strain triangle (CST) elements. This is why quadrilateral elements converge more quickly
2.) The purpose of natural coordinates is to make integration of the stiffness matrix possible by giving easy limits of integration (-1 to 1). The shape functions are much easier to define.
3.) The shape functions for the isoparametric quadrilateral element must be 1.0 at their corresponding node (e.g., node 1 for shape function 1, N1) and zero at all other nodes. They also must have the same form as the possible methods of motion (i.e., the displacement function). Then one simply maps the boundary condition requirements (i.e., where the shape function is one and zero) to the form of the function. For these elements, it is much easier to use natural coordinates (same for every isoparametric element) than physical x, y coordinates (different for every isoparametric element).
4.) The purpose of the Jacobian matrix is to map between the natural coordinates of the isoparametric element and the physical x, y location of nodes in the element.

FEA Isoparametric Quadrilaterals Part 1: Jacobian matrix and natural coordinates

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

FEA Isoparametric Quadrilaterals Part 2: The Strain-Displacement Matrix

FEA Isoparametric Quadrilaterals Part 2: The Strain-Displacement Matrix

Why is dxdy=rdrdθ? (geometry vs Jacobian)

Why is dxdy=rdrdθ? (geometry vs Jacobian)

FEA Isoparametric Quadrilaterals Part 3: Gauss Quadrature for Integration of the Stiffness Matrix

FEA Isoparametric Quadrilaterals Part 3: Gauss Quadrature for Integration of the Stiffness Matrix

Intro to the Finite Element Method | Lectures

Intro to the Finite Element Method | Lectures

Finite Element Method | Theory

Finite Element Method | Theory

Quadratic (or Nonlinear) 9-node isoparametric quadrilateral element in Finite element analysis (FEA)

Quadratic (or Nonlinear) 9-node isoparametric quadrilateral element in Finite element analysis (FEA)

The Jacobian Determinant

The Jacobian Determinant

Intro to the Finite Element Method Lecture 6 | Isoparametric Elements and Gaussian Integration

Intro to the Finite Element Method Lecture 6 | Isoparametric Elements and Gaussian Integration

FEA Isoparametric Quadrilaterals Part 4: Evaluating Stress Results

FEA Isoparametric Quadrilaterals Part 4: Evaluating Stress Results

2D and 3D Elements

2D and 3D Elements

Bilinear Quad Element - Shape Functions

Bilinear Quad Element - Shape Functions

Jacobian prerequisite knowledge

Jacobian prerequisite knowledge

Удаляем свои фото, выходим из чатов, скрываем фамилию? Как избежать штрафов

Удаляем свои фото, выходим из чатов, скрываем фамилию? Как избежать штрафов

Intro to the Finite Element Method Lecture 1 | Introduction & Linear Algebra Review

Intro to the Finite Element Method Lecture 1 | Introduction & Linear Algebra Review

The Jacobian matrix

The Jacobian matrix

Finite Element Method | Theory | Isoparametric Elements

Finite Element Method | Theory | Isoparametric Elements

Визуализация тензоров - часть 1

Визуализация тензоров - часть 1

12 монет Головоломка

12 монет Головоломка

The Jacobian

The Jacobian

Solid Hexahedral Elements in Finite Element Analysis (FEA)

Solid Hexahedral Elements in Finite Element Analysis (FEA)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com