Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

2024: From Complexity to Clarity: Simplifying OpenStreetMap Data for Improved Active Transportation

Автор: State of the Map

Загружено: 2024-11-27

Просмотров: 107

Описание:

https://media.ccc.de/v/state-of-the-m...

OpenStreetMap (OSM) provides detailed street networks essential for analyzing active transportation (AT) infrastructure. However, the granularity and inconsistencies in OSM data pose challenges in modeling AT users' movements at the street level. This study proposes a novel methodology to generate axial networks for AT users using OSM data, simplifying the network while preserving topology. Applied to cities like Turin, Tel Aviv, and San Francisco, this approach effectively streamlined pedestrian and bicycle networks. The proposed methodology can enhance AT infrastructure, contributing to safer and more efficient urban mobility.

Introduction
OpenStreetMap (OSM) offers comprehensive street networks that span nearly every city worldwide. The networks contain essential details like road type and name, and individual streets are often represented through multiple concurrent segments. The segments include separate lanes for motor vehicles, dedicated bike paths, and pedestrian walkways.
OSM's comprehensive dataset allows the creation of specialized networks customized for pedestrian and cyclist analysis, providing users with a powerful tool for understanding and improving active transportation (AT) infrastructure. These specialized networks play a pivotal role in monitoring and understanding walking and bicycling patterns, contributing to infrastructure enhancement aligned with cities' goals for fostering AT to combat traffic congestion, obesity, and air pollution (Nelson et al., 2021)
Nevertheless, the granularity of these networks may pose challenges in modeling AT users' movements on a street level. For example, when assessing AT safety or suggesting a walkability index at the street level, the current data representativeness on OSM necessitates significant manipulation to do so. Furthermore, owing to OSM's open-editing model, the standards for mapping elements are not consistently defined, leading to contentions and variations in data quality (Haklay, 2010). Individuals often map elements based on personal needs and knowledge, introducing inconsistencies in the dataset. Consequently, in some locales, all designated lanes for various users are meticulously mapped, while in others, only a single lane representing the presence of a street is depicted. Additionally, there are instances where only lanes for motor vehicles are detailed, with scant attention paid to lanes catering to other road user groups.
Previous research has endeavored to address this issue. For example, a study suggested a topology-preserving simplification of OSM network data for large-scale simulation in sumo (Meng et al., 2022). However, they primarily focus on less complex areas and prioritizing vehicular considerations when generating the new network over those of AT users.
Aim
In this study, we propose an innovative solution to generate an axial network specifically designed for monitoring and analyzing AT users, using exclusively OSM data. Our approach simplifies the network while preserving its topology. We apply this solution across diverse spatial contexts, from straightforward geographic regions to complex urban environments. Furthermore, we implement our methodology in several cities worldwide—Tel Aviv (Israel), Turin (Italy), and San Francisco (United State)—each characterized by unique urban structures and varying levels of economic development.

Methodology
The preliminary tasks use OSMnx (Boeing, 2017) to acquire OSM street network data, converting it into a graph while correcting topological errors. Then, the data is stored in a geodata table, including polyline geometry, names, and road types. Our algorithm filters out unsuitable roads, like motorways and trunk roads, and replaces roundabouts with their central points.
The network is then ready for the multilane detection algorithm. Polylines identified in a multilane scenario are aggregated into a centerline and added to the Simplification OSM Data (SOD) network. Other polylines are added to the SOD network, retaining their original geometry. A multilane scenario is identified when polylines share the same street name, have similar angles, and are close together. Polylines are grouped by street name, and azimuth (0°-180°) narrows the angle range to ensure that parallel lines are considered parallel, regardless of orientation. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clusters similarly angled polylines using a 10° radius and a minimum of two samples. Outliers with significantly different angles are excluded. The remaining clusters apply a right-shifted buffer to each polyline. If two or more polylines in the same class overlap by at least 10% in the shifted buffer, they're classified as multilane, and the entire class is replaced with one or more centerlines.
The core idea

2024: From Complexity to Clarity: Simplifying OpenStreetMap Data for Improved Active Transportation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

2024: Analyzing the Spatial Distribution of Fuel Stations in Harare, Zimbabwe: Leveraging OpenStreet

2024: Analyzing the Spatial Distribution of Fuel Stations in Harare, Zimbabwe: Leveraging OpenStreet

2024: Assessing the attribute accuracy and logical consistency of road data in OpenStreetMap

2024: Assessing the attribute accuracy and logical consistency of road data in OpenStreetMap

Как ваша библиотека может взаимодействовать с искусственным интеллектом

Как ваша библиотека может взаимодействовать с искусственным интеллектом

Вебинар CTS: Раскрытие возможностей через транспорт

Вебинар CTS: Раскрытие возможностей через транспорт

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Методология оценки влияния интеграции транспортных средств в энергосистему на планирование расшир...

Методология оценки влияния интеграции транспортных средств в энергосистему на планирование расшир...

Think Faster, Talk Smarter with Matt Abrahams

Think Faster, Talk Smarter with Matt Abrahams

2024: Lightning Talks III

2024: Lightning Talks III

Russia 4K - From Saint Petersburg to Kamchatka | Cinematic Drone Footage

Russia 4K - From Saint Petersburg to Kamchatka | Cinematic Drone Footage

Почему опреснение воды так сложно?

Почему опреснение воды так сложно?

Was will Trump mit Grönland?

Was will Trump mit Grönland?

Computer & Technology Basics Course for Absolute Beginners

Computer & Technology Basics Course for Absolute Beginners

How to Focus to Change Your Brain | Huberman Lab Essentials

How to Focus to Change Your Brain | Huberman Lab Essentials

What is a PID Controller? | DigiKey

What is a PID Controller? | DigiKey

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

2024: Shifting trends in global evolution of corporate mapping in OSM

2024: Shifting trends in global evolution of corporate mapping in OSM

Fareed’s take: World countering Trump with shrewd moves

Fareed’s take: World countering Trump with shrewd moves

Насколько мы близки к созданию твердотельных батарей?

Насколько мы близки к созданию твердотельных батарей?

Идеальное оружие: смогут ли гафниевые бомбы заменить ядерные?

Идеальное оружие: смогут ли гафниевые бомбы заменить ядерные?

You Need to Be Bored. Here's Why.

You Need to Be Bored. Here's Why.

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com