Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

2024: From Complexity to Clarity: Simplifying OpenStreetMap Data for Improved Active Transportation

Автор: State of the Map

Загружено: 2024-11-27

Просмотров: 107

Описание:

https://media.ccc.de/v/state-of-the-m...

OpenStreetMap (OSM) provides detailed street networks essential for analyzing active transportation (AT) infrastructure. However, the granularity and inconsistencies in OSM data pose challenges in modeling AT users' movements at the street level. This study proposes a novel methodology to generate axial networks for AT users using OSM data, simplifying the network while preserving topology. Applied to cities like Turin, Tel Aviv, and San Francisco, this approach effectively streamlined pedestrian and bicycle networks. The proposed methodology can enhance AT infrastructure, contributing to safer and more efficient urban mobility.

Introduction
OpenStreetMap (OSM) offers comprehensive street networks that span nearly every city worldwide. The networks contain essential details like road type and name, and individual streets are often represented through multiple concurrent segments. The segments include separate lanes for motor vehicles, dedicated bike paths, and pedestrian walkways.
OSM's comprehensive dataset allows the creation of specialized networks customized for pedestrian and cyclist analysis, providing users with a powerful tool for understanding and improving active transportation (AT) infrastructure. These specialized networks play a pivotal role in monitoring and understanding walking and bicycling patterns, contributing to infrastructure enhancement aligned with cities' goals for fostering AT to combat traffic congestion, obesity, and air pollution (Nelson et al., 2021)
Nevertheless, the granularity of these networks may pose challenges in modeling AT users' movements on a street level. For example, when assessing AT safety or suggesting a walkability index at the street level, the current data representativeness on OSM necessitates significant manipulation to do so. Furthermore, owing to OSM's open-editing model, the standards for mapping elements are not consistently defined, leading to contentions and variations in data quality (Haklay, 2010). Individuals often map elements based on personal needs and knowledge, introducing inconsistencies in the dataset. Consequently, in some locales, all designated lanes for various users are meticulously mapped, while in others, only a single lane representing the presence of a street is depicted. Additionally, there are instances where only lanes for motor vehicles are detailed, with scant attention paid to lanes catering to other road user groups.
Previous research has endeavored to address this issue. For example, a study suggested a topology-preserving simplification of OSM network data for large-scale simulation in sumo (Meng et al., 2022). However, they primarily focus on less complex areas and prioritizing vehicular considerations when generating the new network over those of AT users.
Aim
In this study, we propose an innovative solution to generate an axial network specifically designed for monitoring and analyzing AT users, using exclusively OSM data. Our approach simplifies the network while preserving its topology. We apply this solution across diverse spatial contexts, from straightforward geographic regions to complex urban environments. Furthermore, we implement our methodology in several cities worldwide—Tel Aviv (Israel), Turin (Italy), and San Francisco (United State)—each characterized by unique urban structures and varying levels of economic development.

Methodology
The preliminary tasks use OSMnx (Boeing, 2017) to acquire OSM street network data, converting it into a graph while correcting topological errors. Then, the data is stored in a geodata table, including polyline geometry, names, and road types. Our algorithm filters out unsuitable roads, like motorways and trunk roads, and replaces roundabouts with their central points.
The network is then ready for the multilane detection algorithm. Polylines identified in a multilane scenario are aggregated into a centerline and added to the Simplification OSM Data (SOD) network. Other polylines are added to the SOD network, retaining their original geometry. A multilane scenario is identified when polylines share the same street name, have similar angles, and are close together. Polylines are grouped by street name, and azimuth (0°-180°) narrows the angle range to ensure that parallel lines are considered parallel, regardless of orientation. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clusters similarly angled polylines using a 10° radius and a minimum of two samples. Outliers with significantly different angles are excluded. The remaining clusters apply a right-shifted buffer to each polyline. If two or more polylines in the same class overlap by at least 10% in the shifted buffer, they're classified as multilane, and the entire class is replaced with one or more centerlines.
The core idea

2024: From Complexity to Clarity: Simplifying OpenStreetMap Data for Improved Active Transportation

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

2024: Analyzing the Spatial Distribution of Fuel Stations in Harare, Zimbabwe: Leveraging OpenStreet

2024: Analyzing the Spatial Distribution of Fuel Stations in Harare, Zimbabwe: Leveraging OpenStreet

2024: Assessing the attribute accuracy and logical consistency of road data in OpenStreetMap

2024: Assessing the attribute accuracy and logical consistency of road data in OpenStreetMap

2024: Lightning Talks III

2024: Lightning Talks III

Как Россия учится летать на старых самолетах

Как Россия учится летать на старых самолетах

Вебинар CTS: Раскрытие возможностей через транспорт

Вебинар CTS: Раскрытие возможностей через транспорт

ЭТО НОРВЕГИЯ: «идеальная страна для жизни» | Осло 🇳🇴

ЭТО НОРВЕГИЯ: «идеальная страна для жизни» | Осло 🇳🇴

Largest Road Network Size comparison 2024 by country

Largest Road Network Size comparison 2024 by country

Почему железным дорогам не нужны деформационные швы

Почему железным дорогам не нужны деформационные швы

2024: Lightning Talks IV

2024: Lightning Talks IV

System Design Concepts Course and Interview Prep

System Design Concepts Course and Interview Prep

MIT 6.S087: Базовые модели и генеративный ИИ. ВВЕДЕНИЕ

MIT 6.S087: Базовые модели и генеративный ИИ. ВВЕДЕНИЕ

ВОЙНА ИЗ ПОСЛЕДНИХ СИЛ. БЕСЕДА С ИГОРЕМ ЛИПСИЦЕМ @IgorLipsits_1950

ВОЙНА ИЗ ПОСЛЕДНИХ СИЛ. БЕСЕДА С ИГОРЕМ ЛИПСИЦЕМ @IgorLipsits_1950

Почему опреснение воды так сложно?

Почему опреснение воды так сложно?

Лукашенко: Это бездушное, жуткое отношение! | Кардинальные кадровые перестановки

Лукашенко: Это бездушное, жуткое отношение! | Кардинальные кадровые перестановки

Урок 1 (осн). Физика  - наука о природе

Урок 1 (осн). Физика - наука о природе

ОБЫЧНЫЙ VPN УМЕР: Чем обходить блокировки в 2026

ОБЫЧНЫЙ VPN УМЕР: Чем обходить блокировки в 2026

What is GIS?

What is GIS?

Почему тайна происхождения НЕФТИ до сих пор не раскрыта?

Почему тайна происхождения НЕФТИ до сих пор не раскрыта?

Пантеон: инженерная ошибка, которая пережила 2000 лет

Пантеон: инженерная ошибка, которая пережила 2000 лет

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com