Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Gautam Singh on Representation Learning for Systematic Generalization | Toronto AIR Seminar

Автор: AI Robotics Seminar - University of Toronto

Загружено: 2023-05-03

Просмотров: 338

Описание:

Abstract:
While the underlying fundamental structure of the physical world is compositional and modular, in general, this structure is hidden in modalities such as images and it is quite elusive how one may discover it. Uncovering this hidden structure through the observation of unlabeled data is crucial for fully harnessing the vast amount of available data today. In this talk, I will discuss my recent architectural contributions in the line of unsupervised object-centric learning. I will highlight the benefits of incorporating powerful decoders, such as transformers, which not only simplify the conventional architectures but also enable them to scale to more complex scenes and potentially expand to modalities beyond images. Additionally, I will introduce a novel binding mechanism capable of not only discovering objects but also decomposing factors of within-object variation, which are often entangled in traditional slot-based methods.

Paper:
Singh, Gautam, Fei Deng, and Sungjin Ahn. "Illiterate DALL-E Learns to Compose." ICLR. 2022.
Singh, Gautam, Yi-Fu Wu, and Sungjin Ahn. "Simple Unsupervised Object-Centric Learning for Complex and Naturalistic Videos." NeurIPS. 2022.
Singh, Gautam, Yeongbin Kim, and Sungjin Ahn. "Neural Systematic Binder." ICLR. 2023.

Bio:
Gautam is a PhD student at Rutgers University, supervised by Sungjin Ahn. His research focuses on unsupervised representation learning, specifically aiming to learn compositional representations such as object-centric representations, which can support systematic generalization in downstream tasks. He has contributed to developing architectures that enable unsupervised emergence of object-centric representation, not just in simple scenes (as was the state of the art previously) but also in visually complex scenes with the ultimate goal of scaling it to real scenes. Before starting his PhD, he worked as a research scientist at IBM Research India after obtaining his bachelor's degree from IIT Guwahati.

Toronto AIR Seminar:
The Toronto AI Robotics Seminar Series is a set of events featuring young robotics and AI experts. The talks are given by local as well as global speakers and organized by the Faculty and Students at University of Toronto’s Department of Computer Science. We welcome students, researchers and robotics enthusiasts from around the world to join us and interact with the Toronto Robotics Community.
Find out more at: https://robotics.cs.toronto.edu/toron...

Gautam Singh on Representation Learning for Systematic Generalization | Toronto AIR Seminar

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Bingjie Tang on Transferring Contact-Rich Assembly from Simulation to Reality | Toronto AIR Seminar

Bingjie Tang on Transferring Contact-Rich Assembly from Simulation to Reality | Toronto AIR Seminar

Neuromorphic Computing from the Computer Science Perspective – Algorithms and Applications

Neuromorphic Computing from the Computer Science Perspective – Algorithms and Applications

1.  Structured Decomposition for LLM Reasoning

1. Structured Decomposition for LLM Reasoning

Jun Gao on Towards Generative Modeling of 3D Objects Learned from Images | Toronto AIR Seminar

Jun Gao on Towards Generative Modeling of 3D Objects Learned from Images | Toronto AIR Seminar

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

Визуализация внимания, сердце трансформера | Глава 6, Глубокое обучение

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

LLM fine-tuning или ОБУЧЕНИЕ малой модели? Мы проверили!

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Как LLM могут хранить факты | Глава 7, Глубокое обучение

Почему «Трансформеры» заменяют CNN?

Почему «Трансформеры» заменяют CNN?

Daniel Bruder on Making Soft Robotics Less Hard | Toronto AIR Seminar

Daniel Bruder on Making Soft Robotics Less Hard | Toronto AIR Seminar

Управление поведением LLM без тонкой настройки

Управление поведением LLM без тонкой настройки

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

ИИ - ЭТО ИЛЛЮЗИЯ ИНТЕЛЛЕКТА. Но что он такое и почему совершил революцию?

Wenyuan Zeng on Neural World Models for Autonomous Driving | Toronto AIR Seminar

Wenyuan Zeng on Neural World Models for Autonomous Driving | Toronto AIR Seminar

Как внимание стало настолько эффективным [GQA/MLA/DSA]

Как внимание стало настолько эффективным [GQA/MLA/DSA]

Chris Maddison | The future of representation learning

Chris Maddison | The future of representation learning

Гипотеза Пуанкаре — Алексей Савватеев на ПостНауке

Гипотеза Пуанкаре — Алексей Савватеев на ПостНауке

Nolan Wagener on MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control | Toronto AIR Seminar

Nolan Wagener on MoCapAct: A Multi-Task Dataset for Simulated Humanoid Control | Toronto AIR Seminar

Самая сложная модель из тех, что мы реально понимаем

Самая сложная модель из тех, что мы реально понимаем

Ivan Skorokhodov on Generative Models for Neural Fields | Toronto AIR Seminar

Ivan Skorokhodov on Generative Models for Neural Fields | Toronto AIR Seminar

Нейронка, которая УНИЧТОЖИЛА ChatGPT 5! / Обзор бесплатной нейросети и ее возможности

Нейронка, которая УНИЧТОЖИЛА ChatGPT 5! / Обзор бесплатной нейросети и ее возможности

Christopher Denniston on Active Robot Perception for Understanding the World | Toronto AIR Seminar

Christopher Denniston on Active Robot Perception for Understanding the World | Toronto AIR Seminar

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com