Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

BERTopic Explained

Автор: James Briggs

Загружено: 2022-05-11

Просмотров: 28989

Описание:

90% of the world's data is unstructured. It is built by humans, for humans. That's great for human consumption, but it is very hard to organize when we begin dealing with the massive amounts of data abundant in today's information age.

Organization is complicated because unstructured text data is not intended to be understood by machines, and having humans process this abundance of data is wildly expensive and *very slow*.

Fortunately, there is light at the end of the tunnel. More and more of this unstructured text is becoming accessible and understood by machines. We can now search text based on *meaning*, identify the sentiment of text, extract entities, and much more.

Transformers are behind much of this. These transformers are (unfortunately) not Michael Bay's Autobots and Decepticons and (fortunately) not buzzing electrical boxes. Our NLP transformers lie somewhere in the middle, they're not sentient Autobots (yet), but they can understand language in a way that existed only in sci-fi until a short few years ago.

Machines with a human-like comprehension of language are pretty helpful for organizing masses of unstructured text data. In machine learning, we refer to this task as *topic modeling*, the automatic clustering of data into particular topics.

BERTopic takes advantage of the superior language capabilities of these (not yet sentient) transformer models and uses some other ML magic like UMAP and HDBSCAN (more on these later) to produce what is one of the most advanced techniques in language topic modeling today.

🌲 Pinecone article:
https://www.pinecone.io/learn/bertopic

🔗 Code notebooks:
https://github.com/pinecone-io/exampl...

🤖 70% Discount on the NLP With Transformers in Python course:
https://bit.ly/3DFvvY5

🎉 Subscribe for Article and Video Updates!
  / subscribe  
  / membership  

👾 Discord:
  / discord  

00:00 Intro
01:40 In this video
02:58 BERTopic Getting Started
08:48 BERTopic Components
15:21 Transformer Embedding
18:33 Dimensionality Reduction
25:07 UMAP
31:48 Clustering
37:22 c-TF-IDF
40:49 Custom BERTopic
44:04 Final Thoughts

BERTopic Explained

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Generative AI and Long-Term Memory for LLMs (OpenAI, Cohere, OS, Pinecone)

Generative AI and Long-Term Memory for LLMs (OpenAI, Cohere, OS, Pinecone)

Лучший способ создания тематического моделирования на Python — введение и руководство Top2Vec

Лучший способ создания тематического моделирования на Python — введение и руководство Top2Vec

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

Визуализация скрытого пространства: PCA, t-SNE, UMAP | Глубокое обучение с анимацией

BERTopic for Topic Modeling - Maarten Grootendorst - Talking Language AI Ep#1

BERTopic for Topic Modeling - Maarten Grootendorst - Talking Language AI Ep#1

Visualizing High Dimension Data Using UMAP Is A Piece Of Cake Now

Visualizing High Dimension Data Using UMAP Is A Piece Of Cake Now

A Crash Course in Topic Modelling with BERTopic

A Crash Course in Topic Modelling with BERTopic

Тематическое моделирование с Llama 2

Тематическое моделирование с Llama 2

Topic Modeling Explained (LDA, BERT, Machine Learning)🤯📚🔍

Topic Modeling Explained (LDA, BERT, Machine Learning)🤯📚🔍

How to use BERTopic - Machine Learning Assisted Topic Modeling in Python

How to use BERTopic - Machine Learning Assisted Topic Modeling in Python

Presentation on BERTopic for embedding-based topic modelling

Presentation on BERTopic for embedding-based topic modelling

An Introduction to Topic Modeling

An Introduction to Topic Modeling

How I Used BERTopic for Topic Modeling on Real News Data

How I Used BERTopic for Topic Modeling on Real News Data

SPLADE: the first search model to beat BM25

SPLADE: the first search model to beat BM25

3 Vector-based Methods for Similarity Search (TF-IDF, BM25, SBERT)

3 Vector-based Methods for Similarity Search (TF-IDF, BM25, SBERT)

Трансформерные нейронные сети — ОБЪЯСНЕНИЕ! (Внимание — это всё, что вам нужно)

Трансформерные нейронные сети — ОБЪЯСНЕНИЕ! (Внимание — это всё, что вам нужно)

BERTopic : Topic Modelling with Transformer Embeddings , arxiv dataset python demo #NLP #tutorial

BERTopic : Topic Modelling with Transformer Embeddings , arxiv dataset python demo #NLP #tutorial

Is GPL the Future of Sentence Transformers? | Generative Pseudo-Labeling Deep Dive

Is GPL the Future of Sentence Transformers? | Generative Pseudo-Labeling Deep Dive

LLM-powered Topic Modeling

LLM-powered Topic Modeling

BERTopic Homework Walkthrough: Analyzing Tweets with Advanced NLP

BERTopic Homework Walkthrough: Analyzing Tweets with Advanced NLP

BERT for Topic Modeling - EXPLAINED!

BERT for Topic Modeling - EXPLAINED!

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com