Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Simulating Geometric Brownian Motion in Python | Stochastic Calculus for Quants

Автор: QuantPy

Загружено: 2021-09-15

Просмотров: 44317

Описание:

In this tutorial we will learn how to simulate a well-known stochastic process called geometric Brownian motion. This code can be found on my website and is implemented in Python. The mathematic notation and explanations are from Steven Shreve's book Stochastic Calculus for Finance II.

We will not be describing or explaining what the stochastic differential equation (SDE) means or how to understand its dynamics using Ito calculus. This will be on the agenda for the following video.

★ ★ Code Available on GitHub ★ ★
GitHub: https://github.com/TheQuantPy
Specific Tutorial Link: https://github.com/TheQuantPy/youtube...

★ A data driven path to getting a job in Quant Finance
https://www.quantpykit.com/

★ QuantPy GitHub
Collection of resources used on QuantPy YouTube channel. https://github.com/thequantpy

Disclaimer: All ideas, opinions, recommendations and/or forecasts, expressed or implied in this content, are for informational and educational purposes only and should not be construed as financial product advice or an inducement or instruction to invest, trade, and/or speculate in the markets. Any action or refraining from action; investments, trades, and/or speculations made in light of the ideas, opinions, and/or forecasts, expressed or implied in this content, are committed at your own risk an consequence, financial or otherwise.

Simulating Geometric Brownian Motion in Python | Stochastic Calculus for Quants

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Stochastic Calculus for Quants | Understanding Geometric Brownian Motion using Itô Calculus

Stochastic Calculus for Quants | Understanding Geometric Brownian Motion using Itô Calculus

Brownian Motion for Financial Mathematics | Brownian Motion for Quants | Stochastic Calculus

Brownian Motion for Financial Mathematics | Brownian Motion for Quants | Stochastic Calculus

The experiment that revealed the atomic world: Brownian Motion

The experiment that revealed the atomic world: Brownian Motion

The Magic Formula for Trading Options Risk Free

The Magic Formula for Trading Options Risk Free

Python Machine Learning Tutorial (Data Science)

Python Machine Learning Tutorial (Data Science)

Геометрическое броуновское движение

Геометрическое броуновское движение

Learn Pandas in 30 Minutes - Python Pandas Tutorial

Learn Pandas in 30 Minutes - Python Pandas Tutorial

Brownian Motion Share Price Modelling

Brownian Motion Share Price Modelling

Monte Carlo Simulation with Python

Monte Carlo Simulation with Python

17. Stochastic Processes II

17. Stochastic Processes II

«Основы статистического арбитража: понимание математики, лежащей в основе парного трейдинга» Макс...

«Основы статистического арбитража: понимание математики, лежащей в основе парного трейдинга» Макс...

Python NumPy Tutorial for Beginners

Python NumPy Tutorial for Beginners

Binomial Option Pricing Model || Theory & Implementation in Python

Binomial Option Pricing Model || Theory & Implementation in Python

Simulating Brownian Motion in Python

Simulating Brownian Motion in Python

Моделирование Монте-Карло

Моделирование Монте-Карло

Monte Carlo Simulation of a Stock Portfolio with Python

Monte Carlo Simulation of a Stock Portfolio with Python

Stochastic Calculus for Quants | Risk-Neutral Pricing for Derivatives | Option Pricing Explained

Stochastic Calculus for Quants | Risk-Neutral Pricing for Derivatives | Option Pricing Explained

Геометрическое броуновское движение на Python

Геометрическое броуновское движение на Python

Everything You Need to Become a Quant in 31 Minutes

Everything You Need to Become a Quant in 31 Minutes

Brownian Motion | Part 3 Stochastic Calculus for Quantitative Finance

Brownian Motion | Part 3 Stochastic Calculus for Quantitative Finance

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com