Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Conditional Inference Decision Trees with CTREE in Rstudio

Автор: Profesor Dr. Carlos Martínez

Загружено: 2021-03-26

Просмотров: 4082

Описание:

Learn to build predictive models with machine learning, using different Rstudio´s packages: ROCR, caret, XGBoost, rparty, and others.

Available at:

Udemy: https://www.udemy.com/course/decision... (send me an e-mail to [email protected] to receive a $9.99 coupon!)

Skillshare: https://skl.sh/31jgWYc

Would you like to build predictive models using machine learning? That´s precisely what you will learn in this course “Decision Trees, Random Forests and Gradient Boosting in R.” My name is Carlos Martínez, I have a Ph.D. in Management from the University of St. Gallen in Switzerland. I have presented my research at some of the most prestigious academic conferences and doctoral colloquiums at the University of Tel Aviv, Politecnico di Milano, University of Halmstad, and MIT. Furthermore, I have co-authored more than 25 teaching cases, some of them included in the case bases of Harvard and Michigan.

This is a very comprehensive course that includes presentations, tutorials, and assignments. The course has a practical approach based on the learning-by-doing method in which you will learn decision trees and ensemble methods based on decision trees using a real dataset. In addition to the videos, you will have access to all the Excel files and R codes that we will develop in the videos and to the solutions of the assignments included in the course with which you will self-evaluate and gain confidence in your new skills.

After a brief theoretical introduction, we will illustrate step by step the algorithm behind the recursive partitioning decision trees. After we know this algorithm in-depth, we will have earned the right to automate it in R, using the ctree and rpart functions to respectively construct conditional inference and recursive partitioning decision trees. Furthermore, we will learn to estimate the complexity parameter and to prune trees to increase the accuracy and reduce the overfitting of our predictive models. After building the decision trees in R, we will also learn two ensemble methods based on decision trees, such as Random Forests and Gradient Boosting. Finally, we will construct the ROC curve and calculate the area under such curve, which will serve as a metric to compare the goodness of our models.

The ideal students of this course are university students and professionals interested in machine learning and business intelligence. The course includes an introduction to the decision trees algorithm so the only requirement for the course is a basic knowledge of spreadsheets and R.

I hope you are ready to upgrade yourself and learn to optimize investment portfolios with excel and R. I´ll see you in class!

Conditional Inference Decision Trees with CTREE in Rstudio

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Workshop: An introduction to conditional inference trees in R

Workshop: An introduction to conditional inference trees in R

Chillout Lounge - Calm & Relaxing Background Music | Study, Work, Sleep, Meditation, Chill

Chillout Lounge - Calm & Relaxing Background Music | Study, Work, Sleep, Meditation, Chill

Machine Intelligence - Lecture 16 (Decision Trees)

Machine Intelligence - Lecture 16 (Decision Trees)

«Вот теперь я задумался об эмиграции»: зачем Кремль заблокировал Roblox и как реагируют россияне

«Вот теперь я задумался об эмиграции»: зачем Кремль заблокировал Roblox и как реагируют россияне

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

Введение в R: Деревья решений

Введение в R: Деревья решений

Decision and Classification Trees, Clearly Explained!!!

Decision and Classification Trees, Clearly Explained!!!

Лучший Гайд по Kafka для Начинающих За 1 Час

Лучший Гайд по Kafka для Начинающих За 1 Час

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

StatQuest: Random Forests in R

StatQuest: Random Forests in R

Основы Tableau для начинающих — Tableau за две минуты

Основы Tableau для начинающих — Tableau за две минуты

Morning Soul Café ☕ 🎶 Gentle Jazz & R&B Grooves for a Calm Mind |  勉強と仕事に集中 🎧 心を落ち着かせリラックスできるBGM

Morning Soul Café ☕ 🎶 Gentle Jazz & R&B Grooves for a Calm Mind | 勉強と仕事に集中 🎧 心を落ち着かせリラックスできるBGM

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Deep House Mix 2024 | Deep House, Vocal House, Nu Disco, Chillout Mix by Diamond #3

Как интерпретировать (и оценивать!) GLM в R

Как интерпретировать (и оценивать!) GLM в R

Алгоритм случайного леса наглядно объяснен!

Алгоритм случайного леса наглядно объяснен!

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Музыка для работы за компьютером | Фоновая музыка для концентрации и продуктивности

Bossa Nova Jazz - Best Bossa Nova Covers 2025 for a Relaxing Vibe

Bossa Nova Jazz - Best Bossa Nova Covers 2025 for a Relaxing Vibe

Visualizing Decision Trees in R

Visualizing Decision Trees in R

R - Classification Trees (part 1 using C5.0)

R - Classification Trees (part 1 using C5.0)

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]