Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

DTC: Deep Tracking Control

Автор: Robotic Systems Lab: Legged Robotics at ETH Zürich

Загружено: 2024-01-17

Просмотров: 19270

Описание:

We have combined trajectory optimization and reinforcement learning to achieve versatile and robust perceptive legged locomotion.

Published in Science Robotics: https://www.science.org/doi/10.1126/s...

arXiv: https://doi.org/10.48550/arXiv.2309.1...

Abstract: Legged locomotion is a complex control problem that requires both accuracy and robustness to cope with real-world challenges. Legged systems have traditionally been controlled using trajectory optimization with inverse dynamics. Such hierarchical model-based methods are appealing due to intuitive cost function tuning, accurate planning, generalization, and most importantly, the insightful understanding gained from more than one decade of extensive research. However, model mismatch and violation of assumptions are common sources of faulty operation. Simulation-based reinforcement learning, on the other hand, results in locomotion policies with unprecedented robustness and recovery skills.
Yet, all learning algorithms struggle with sparse rewards emerging from environments where valid footholds are rare, such as gaps or stepping stones. In this work, we propose a hybrid control architecture that combines the advantages of both worlds to simultaneously achieve greater robustness, foot-placement accuracy, and terrain generalization. Our approach utilizes a model-based planner to roll out a reference motion during training. A deep neural network policy is trained in simulation, aiming to track the optimized footholds. We evaluate the accuracy of our locomotion pipeline on sparse terrains, where pure data-driven methods are prone to fail. Furthermore, we demonstrate superior robustness in the presence of slippery or deformable ground when compared to model-based counterparts. Finally, we show that our proposed tracking controller generalizes across different trajectory optimization methods not seen during training. In conclusion, our work unites the predictive capabilities and optimality guarantees of online planning with the inherent robustness attributed to offline learning.

Authors: Fabian Jenelten, Junzhe He, Farbod Farshidian, and Marco Hutter

Video: Fabian Jenelten

#ANYmal #leggedrobot #robot #robotics #robotdog #AI #reinforcementlearning #rl #rescue #innovation #armasuisse #arche2023 #scienceresearch #stepping

DTC: Deep Tracking Control

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

ANYmal Unleashed: Revolutionizing Search-and-Rescue with Legged Robots (DTC: Deep Tracking Control)

ANYmal Unleashed: Revolutionizing Search-and-Rescue with Legged Robots (DTC: Deep Tracking Control)

TAMOLS: Terrain-Aware Motion Optimization for Legged Systems

TAMOLS: Terrain-Aware Motion Optimization for Legged Systems

⚙️Мощная бормашинка из китайских запчастей

⚙️Мощная бормашинка из китайских запчастей

Does our robot have bird legs?

Does our robot have bird legs?

Высокоточный редуктор скорости с тросом

Высокоточный редуктор скорости с тросом

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Как производятся микрочипы? 🖥️🛠️ Этапы производства процессоров

Perceptive Locomotion through Nonlinear Model Predictive Control

Perceptive Locomotion through Nonlinear Model Predictive Control

Как работала машина

Как работала машина "Энигма"?

Tutorial: Gait and Trajectory Optimization for Legged Robots

Tutorial: Gait and Trajectory Optimization for Legged Robots

Alternative to bearings for tiny robots

Alternative to bearings for tiny robots

Design and Control of a Bipedal Robotic Character

Design and Control of a Bipedal Robotic Character

#2: Как работает термитная сварка рельсов? [Veritasium]

#2: Как работает термитная сварка рельсов? [Veritasium]

Parkour in the Wild, Learning Agile Locomotion on any Terrain

Parkour in the Wild, Learning Agile Locomotion on any Terrain

MIT Robotics - Marco Hutter - Robots in the wild

MIT Robotics - Marco Hutter - Robots in the wild

Как электростатические двигатели нарушают все правила

Как электростатические двигатели нарушают все правила

I Built an Internal Cycloidal Robotic Actuator

I Built an Internal Cycloidal Robotic Actuator

ANYmal Parkour: Learning Agile Navigation for Quadrupedal Robots

ANYmal Parkour: Learning Agile Navigation for Quadrupedal Robots

DOC: Differentiable Optimal Control for Retargeting Motions onto Legged Robots

DOC: Differentiable Optimal Control for Retargeting Motions onto Legged Robots

Я Построил Рогатку Более Мощную, чем Пистолет

Я Построил Рогатку Более Мощную, чем Пистолет

Как построить спутник

Как построить спутник

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]