Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Enhancing Feature Tracking Reliability for Visual Navigation using Real-Time Safety Filter

Автор: LARR SNU

Загружено: 2025-01-29

Просмотров: 735

Описание:

Title: Enhancing Feature Tracking Reliability for Visual Navigation using Real-Time Safety Filter
Status: International Conference on Robotics and Automation (ICRA) 2025 accepted
Category: visual navigation & active perception
Author: Dabin Kim*, Inkyu Jang*, Youngsoo Han, Sunwoo Hwang, and H. Jin Kim
Abstract:
Vision sensors are extensively used for localizing a robot's pose, particularly in environments where global localization tools such as GPS or motion capture systems are unavailable. In many visual navigation systems, localization is achieved by detecting and tracking visual features or landmarks, which provide information about the sensor's relative pose. For reliable feature tracking and
accurate pose estimation, it is crucial to maintain
visibility of a sufficient number of features. This requirement can sometimes conflict with the robot's overall task objective. In this paper, we approach it as a constrained control problem. By leveraging the invariance properties of visibility constraints within the robot's kinematic model, we propose a real-time safety filter based on quadratic programming. This filter takes a reference velocity command as input and produces a modified velocity that minimally deviates from the reference while ensuring the information score from the currently visible features remains above a user-specified threshold. Numerical simulations demonstrate that the proposed safety filter preserves the invariance condition and ensures the visibility of more features than the required minimum. We also validated its real-world performance by integrating it into a visual simultaneous localization and mapping (SLAM) algorithm, where it maintained high estimation quality in challenging environments, outperforming a simple tracking controller.
Contact: dabin404@snu.ac.kr

Enhancing Feature Tracking Reliability for Visual Navigation using Real-Time Safety Filter

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Category-level Neural Field for Reconstruction of Partially Observed Objects in Indoor Environment

Category-level Neural Field for Reconstruction of Partially Observed Objects in Indoor Environment

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM)

Этот ракетный двигатель не был разработан людьми.

Этот ракетный двигатель не был разработан людьми.

Understanding SLAM Using Pose Graph Optimization | Autonomous Navigation, Part 3

Understanding SLAM Using Pose Graph Optimization | Autonomous Navigation, Part 3

What Is Autonomous Navigation? | Autonomous Navigation, Part 1

What Is Autonomous Navigation? | Autonomous Navigation, Part 1

SLAM Robot Mapping - Computerphile

SLAM Robot Mapping - Computerphile

Machine learning models in autonomous driving  From theory to practice

Machine learning models in autonomous driving From theory to practice

Metamaterial enabled Mechanical Energy Focusing and Harvesting - Miso Kim

Metamaterial enabled Mechanical Energy Focusing and Harvesting - Miso Kim

What If You Keep Slowing Down?

What If You Keep Slowing Down?

Простой SLAM с ROS с использованием slam_toolbox

Простой SLAM с ROS с использованием slam_toolbox

[RA-L] Hierarchical Active Exploration of Radiance Field with Epistemic Uncertainty Minimization

[RA-L] Hierarchical Active Exploration of Radiance Field with Epistemic Uncertainty Minimization

Autonomous Aerial Perching and Unperching Using Omnidirectional Tiltrotor and Switching Controller

Autonomous Aerial Perching and Unperching Using Omnidirectional Tiltrotor and Switching Controller

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Для Чего РЕАЛЬНО Нужен был ГОРБ Boeing 747?

Decentralized Trajectory Planning for Quadrotor Swarm

Decentralized Trajectory Planning for Quadrotor Swarm

Официальное сравнение YOLOv7 Pose и MediaPipe | Полное сравнение оценки позы в реальном времени |...

Официальное сравнение YOLOv7 Pose и MediaPipe | Полное сравнение оценки позы в реальном времени |...

25 Запрещенных Гаджетов, Которые Вы Можете Купить Онлайн

25 Запрещенных Гаджетов, Которые Вы Можете Купить Онлайн

Pose Estimation with ml5.js

Pose Estimation with ml5.js

IREX 2025: Будущее уже здесь | Новейшие Технологии на Выставке в Японии

IREX 2025: Будущее уже здесь | Новейшие Технологии на Выставке в Японии

Robotic Mapping with Ultrasonic Sensor

Robotic Mapping with Ultrasonic Sensor

USACM Math Methods TTA Asia-US Seminar Series - Qianxiao Li and Oliver Schmidt

USACM Math Methods TTA Asia-US Seminar Series - Qianxiao Li and Oliver Schmidt

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: infodtube@gmail.com