A framework to infill missing data from freshwater high-frequency sensor data
Автор: ACEMS - ARC Centre of Excellence for Mathematical & Statistical Frontiers
Загружено: 2022-01-31
Просмотров: 59
ARC Linkage Project Workshop: Revolutionising water quality monitoring in the information age.
Prof Benoit Liquet-Weiland, Macquarie University
Removing anomalous data creates missing values in in-situ sensor data. Benoit Weiland-Liquet demonstrates how time series models that include other water quality variables as covariates can be implemented in a computationally efficient manner, using freely available software, and used to infill missing water-quality data from in-situ sensors deployed in three diverse river systems within the USA.
Доступные форматы для скачивания:
Скачать видео mp4
-
Информация по загрузке: