Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Machine Learning Work Shop - Bayesian Nonparametrics for Complex Dynamical Phenomena

Автор: Microsoft Research

Загружено: 2016-08-11

Просмотров: 7086

Описание:

Machine Learning Work Shop-Session 3 - Emily Fox - 'Bayesian Nonparametrics for Complex Dynamical Phenomena' Markov switching processes, such as hidden Markov models (HMMs) and switching linear dynamical systems (SLDSs), are often used to describe rich classes of dynamical phenomena. They describe complex temporal behavior via repeated returns to a set of simpler models: imagine, for example, a person alternating between walking, running and jumping behaviors, or a stock index switching between regimes of high and low volatility. Traditional modeling approaches for Markov switching processes typically assume a fixed, pre-specified number of dynamical models. Here, in contrast, we discuss Bayesian nonparametric approaches that define priors on an unbounded number of potential Markov models by employing stochastic processes including the beta and Dirichlet process. These methods allow the data to define the complexity of inferred classes of models, while permitting efficient computational algorithms for inference. Interleaved throughout the talk are results from various applications including analysis of the NIST speaker diarization database and human motion capture videos.

Machine Learning Work Shop - Bayesian Nonparametrics for Complex Dynamical Phenomena

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Microsoft Research Forum | Season 2, Episode 2

Microsoft Research Forum | Season 2, Episode 2

The Bayesians are Coming to Time Series

The Bayesians are Coming to Time Series

Dirichlet Process Mixture Models and Gibbs Sampling

Dirichlet Process Mixture Models and Gibbs Sampling

Leveraging Loanword Constraints for Improving Machine Translation in Low-resource Settings

Leveraging Loanword Constraints for Improving Machine Translation in Low-resource Settings

History of Bayesian Neural Networks (Keynote talk)

History of Bayesian Neural Networks (Keynote talk)

Ideas: Community building, machine learning, and the future of AI

Ideas: Community building, machine learning, and the future of AI

Неравенство Белла: самая странная теорема в мире | Нобелевская премия 2022 года

Неравенство Белла: самая странная теорема в мире | Нобелевская премия 2022 года

ML Tutorial: Gaussian Processes (Richard Turner)

ML Tutorial: Gaussian Processes (Richard Turner)

Andrew Rowan - Bayesian Deep Learning with Edward (and a trick using Dropout)

Andrew Rowan - Bayesian Deep Learning with Edward (and a trick using Dropout)

Nonparametric Bayesian Methods: Models, Algorithms, and Applications I

Nonparametric Bayesian Methods: Models, Algorithms, and Applications I

Проектирование системы WHATSAPP: системы чат-сообщений для собеседований

Проектирование системы WHATSAPP: системы чат-сообщений для собеседований

Yee Whye Teh: On Bayesian Deep Learning and Deep Bayesian Learning (NIPS 2017 Keynote)

Yee Whye Teh: On Bayesian Deep Learning and Deep Bayesian Learning (NIPS 2017 Keynote)

Graph neural networks: Variations and applications

Graph neural networks: Variations and applications

Дружественное введение в теорему Байеса и скрытые марковские модели

Дружественное введение в теорему Байеса и скрытые марковские модели

The Anatomy of a Dynamical System

The Anatomy of a Dynamical System

Christopher Fonnesbeck   Probabilistic Programming with PyMC3   PyCon 2017

Christopher Fonnesbeck Probabilistic Programming with PyMC3 PyCon 2017

Bayesian Nonparametrics 1 - Yee Whye Teh - MLSS 2013 Tübingen

Bayesian Nonparametrics 1 - Yee Whye Teh - MLSS 2013 Tübingen

Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)

Variational Inference: Foundations and Modern Methods (NIPS 2016 tutorial)

Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?

Как Сделать Настольный ЭЛЕКТРОЭРОЗИОННЫЙ Станок?

ComPer 2023: Time Series Analysis using Zigzag Persistent Homology by Sarah Tymochko

ComPer 2023: Time Series Analysis using Zigzag Persistent Homology by Sarah Tymochko

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]