Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Линейная регрессия с нуля (геометрия, математика и Python)

Автор: Decoding Complexities

Загружено: 2025-11-28

Просмотров: 17

Описание:

Для человека набор данных — это всего лишь электронная таблица. Но для компьютера это геометрическая задача. Прогнозирование значения — это не просто «обучение», это поиск наилучшего возможного решения математически невозможной системы уравнений.

В этом видео мы подробно разбираем линейное регрессионное моделирование. Мы выходим за рамки простых формул и строим алгоритм на основе базовых принципов. Мы начнём с геометрии векторных пространств, выведем нормальные уравнения с помощью ортогональных проекций, реализуем решение с нуля на Python (NumPy) и, наконец, используем статистику (оценку максимального правдоподобия), чтобы доказать, что минимизация квадратичной ошибки на самом деле является оптимальным подходом.

Это полное руководство для разработчиков и инженеров, которые хотят понять «призрак в машине».

💻 ПОЛУЧИТЬ КОД:
Запустите код Python из этого видео прямо в браузере:
https://colab.research.google.com/dri...

📖 ЧИТАЙТЕ СОПУТСТВУЮЩУЮ СТАТЬЮ В БЛОГЕ:
Подробнее о математике и выводе можно узнать здесь:
https://www.pradeeppanga.com/2025/11/...

---

🎓 В ЭТОМ ВИДЕО ВЫ УЗНАЕТЕ:
Как преобразовать таблицы данных в матрицы (X) и векторы (y).
Как обрабатывать свободные конечные точки с помощью линейной алгебры.
Почему линейная регрессия на самом деле является задачей проекции (X^T e = 0).

Вывод нормальных уравнений (w = (X^T X)^{-1} X^T y).

Реализация решения на Python с помощью `numpy.linalg.solve`.

Связь метода наименьших квадратов с гауссовским шумом и оценкой максимального правдоподобия (MLE).

---

ТАЙМ-КОДЫ:
0:00 — Электронная таблица против геометрии
0:42 — Постановка задачи (Матрица плана)
1:28 — Хитрость смещения (Обработка пересечений)
1:45 — Геометрическая невозможность (Пространство столбцов)
2:15 — Решение: Ортогональные проекции
2:55 — Вывод нормальных уравнений
3:25 — Программирование линейной регрессии с нуля (NumPy)
4:15 — Совет: Почему мы используем «Solve» вместо «Inverse»
5:20 — Глубокий вопрос: Почему квадрат ошибки?
5:40 — Вероятностный подход (максимальное правдоподобие)
7:00 — Следующая задача: переобучение

---

#ЛинейнаяРегрессия #МашинноеОбучение #Python #НаукаОНаукеО Данных #ЛинейнаяАлгебра #NumPy #ГлубокоеОбучение #Математика

Линейная регрессия с нуля (геометрия, математика и Python)

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Механизм линейной регрессии: визуализация наименьших квадратов

Механизм линейной регрессии: визуализация наименьших квадратов

Краткое объяснение больших языковых моделей

Краткое объяснение больших языковых моделей

Linear Regression From Scratch in Python (Mathematical)

Linear Regression From Scratch in Python (Mathematical)

Orthogonal Projection Formulas (Least Squares) - Projection, Part 2

Orthogonal Projection Formulas (Least Squares) - Projection, Part 2

Мгновенный перевод голоса в текст + функции ChatGPT! БЕСПЛАТНО! ПРОЩЕ НЕ БЫВАЕТ!

Мгновенный перевод голоса в текст + функции ChatGPT! БЕСПЛАТНО! ПРОЩЕ НЕ БЫВАЕТ!

Linear Regression in Python - Full Project for Beginners

Linear Regression in Python - Full Project for Beginners

Как быстро выучить математику для машинного обучения (даже с нулевым уровнем знаний по математике)

Как быстро выучить математику для машинного обучения (даже с нулевым уровнем знаний по математике)

Что такое векторное пространство? (Математика, лежащая в основе Word2Vec)

Что такое векторное пространство? (Математика, лежащая в основе Word2Vec)

Алгоритмы и структуры данных за 15 минут! Вместо 4 лет универа

Алгоритмы и структуры данных за 15 минут! Вместо 4 лет универа

Projection Matrix Properties - Projection, Part 1

Projection Matrix Properties - Projection, Part 1

Максим Шевченко: Особое мнение / 08.12.25 @MaximShevchenko

Максим Шевченко: Особое мнение / 08.12.25 @MaximShevchenko

Где начало СХЕМЫ? Понимаем, читаем, изучаем схемы. Понятное объяснение!

Где начало СХЕМЫ? Понимаем, читаем, изучаем схемы. Понятное объяснение!

Теорема Байеса, геометрия изменения убеждений

Теорема Байеса, геометрия изменения убеждений

Смешайте ЛАК с КЛЕЕМ ПВА и откройте СЕКРЕТ, о котором мало кто знает! Удивительно!

Смешайте ЛАК с КЛЕЕМ ПВА и откройте СЕКРЕТ, о котором мало кто знает! Удивительно!

NumPy Tutorial: For Physicists, Engineers, and Mathematicians

NumPy Tutorial: For Physicists, Engineers, and Mathematicians

Simple Linear Regression: An Easy and Clear Beginner’s Guide

Simple Linear Regression: An Easy and Clear Beginner’s Guide

Linear Regression, Clearly Explained!!!

Linear Regression, Clearly Explained!!!

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Суть линейной алгебры: #7. Обратные матрицы, пространство столбцов и нуль-пространство

Новый NotebookLM: НИКОГДА НЕ ВРЕТ! Большой бесплатный курс по нейросети от Google

Новый NotebookLM: НИКОГДА НЕ ВРЕТ! Большой бесплатный курс по нейросети от Google

Самая Сложная Задача В Истории Самой Сложной Олимпиады

Самая Сложная Задача В Истории Самой Сложной Олимпиады

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]