Популярное

Музыка Кино и Анимация Автомобили Животные Спорт Путешествия Игры Юмор

Интересные видео

2025 Сериалы Трейлеры Новости Как сделать Видеоуроки Diy своими руками

Топ запросов

смотреть а4 schoolboy runaway турецкий сериал смотреть мультфильмы эдисон
dTub
Скачать

Kun Zhang on Causal Representation Learning | PyWhy Causality in Practice Talk Series

Автор: PyWhy | An open-source ecosystem for Causal ML

Загружено: 2024-02-23

Просмотров: 2060

Описание:

Prof. Kun Zhang, currently on leave from Carnegie Mellon University (CMU), is a professor and the acting chair of the machine learning department and the director of the Center for Integrative AI at Mohamed bin Zayed University of Artificial Intelligence (MBZUAI). In this talk, he gives an overview of causal representation learning and how it has evolved over time.

Causality is a fundamental notion in science, engineering, and even in machine learning. Causal representation learning aims to reveal the underlying high-level hidden causal variables and their relations. It can be seen as a special case of causal discovery, whose goal is to recover the underlying causal structure or causal model from observational data. The modularity property of a causal system implies properties of minimal changes and independent changes of causal representations, and in this talk, we show how such properties make it possible to recover the underlying causal representations from observational data with identifiability guarantees: under appropriate assumptions, the learned representations are consistent with the underlying causal process. Various problem settings are considered, involving independent and identically distributed (i.i.d.) data, temporal data, or data with distribution shift as input. We demonstrate when identifiable causal representation learning can benefit from flexible deep learning and when suitable parametric assumptions have to be imposed on the causal process, with various examples and applications.

**PyWhy Causality in Practice**: A talk series focusing on causality and machine learning, especially from a practical perspective. We'll have tutorials and presentations about PyWhy libraries and talks by external speakers working on causal inference. https://www.pywhy.org/community/videos

Kun Zhang on Causal Representation Learning | PyWhy Causality in Practice Talk Series

Поделиться в:

Доступные форматы для скачивания:

Скачать видео mp4

  • Информация по загрузке:

Скачать аудио mp3

Похожие видео

Yujia Zheng on causal-learn library: Causal discovery in Python | PyWhy Causality in Practice Talk

Yujia Zheng on causal-learn library: Causal discovery in Python | PyWhy Causality in Practice Talk

Causal Representation Learning: A Natural Fit for Mechanistic Interpretability

Causal Representation Learning: A Natural Fit for Mechanistic Interpretability

Caroline Uhler: Causal Representation Learning and Optimal Intervention Design

Caroline Uhler: Causal Representation Learning and Optimal Intervention Design

PyWhy Causality in Practice talk series: Emre Kiciman on using LLMs for causal inference

PyWhy Causality in Practice talk series: Emre Kiciman on using LLMs for causal inference

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

LLM и GPT - как работают большие языковые модели? Визуальное введение в трансформеры

ХОДОРКОВСКИЙ против ПАСТУХОВА: Путин не фанатик. Хасис у Собчак. Раскол США и Европы. Украина

ХОДОРКОВСКИЙ против ПАСТУХОВА: Путин не фанатик. Хасис у Собчак. Раскол США и Европы. Украина

Francesco Locatello: Powering causality with ML: Discovery, Representations, and Inference

Francesco Locatello: Powering causality with ML: Discovery, Representations, and Inference

4 Hours Chopin for Studying, Concentration & Relaxation

4 Hours Chopin for Studying, Concentration & Relaxation

Yoshua Bengio Guest Talk - Towards Causal Representation Learning

Yoshua Bengio Guest Talk - Towards Causal Representation Learning

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Но что такое нейронная сеть? | Глава 1. Глубокое обучение

Lecture 6: Causality (Adèle Ribeiro)

Lecture 6: Causality (Adèle Ribeiro)

14. Causal Inference, Part 1

14. Causal Inference, Part 1

Calvin Luo - Understanding diffusion models: A unified perspective

Calvin Luo - Understanding diffusion models: A unified perspective

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

An introduction to Causal Inference with Python – making accurate estimates of cause and effect from

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

ДНК создал Бог? Самые свежие научные данные о строении. Как работает информация для жизни организмов

Simple explanation of disentanglement ft. cute doggos & state-of-the-art work

Simple explanation of disentanglement ft. cute doggos & state-of-the-art work

A Tutorial on Causal Representation Learning | Jason Hartford & Dhanya Sridhar

A Tutorial on Causal Representation Learning | Jason Hartford & Dhanya Sridhar

MIA: Cheng Zhang and Nick Pawlowski, Deep End-to-end Causal Inference; Primer: Causal Discovery

MIA: Cheng Zhang and Nick Pawlowski, Deep End-to-end Causal Inference; Primer: Causal Discovery

Киркоров за Пугачеву. Долину отмазал Киселев. Урганта и Галкина снова ругают. Михалков обижен на ИИ

Киркоров за Пугачеву. Долину отмазал Киселев. Урганта и Галкина снова ругают. Михалков обижен на ИИ

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

Градиентный спуск, как обучаются нейросети | Глава 2, Глубинное обучение

© 2025 dtub. Все права защищены.



  • Контакты
  • О нас
  • Политика конфиденциальности



Контакты для правообладателей: [email protected]